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An Interaction-Based Decomposition of Generalized
Word Counts Suited to Assessing Combinatorial

Equivalence of Factorial Designs
Ulrike Grömping

Beuth University of Applied Sciences, Berlin

Abstract

This paper provides new insights into coding invariance for designs with qualitative factors, including
a coding invariant way of denoting the model coefficients. Furthermore, “interaction contributions” (ICs)
are proposed for decomposing generalized word counts into contributions that neither depend on level
allocation nor on the coding of factors in factorial designs. Combinatorially equivalent designs yield the
same ICs, so that ICs are suitable for characterizing factorial designs with qualitative factors. ICs are
based on singular value decomposition and are related to bias contributions by interaction degrees of
freedom on the estimation of the intercept. The paper introduces ICs and their tabulations in interaction
contribution frequency tables and illustrates their behavior in various examples. For situations where
both are applicable, ICs are compared to the mean aberrations that were proposed Fontana, Rapallo and
Rogantin (2016). The latter were introduced as a tool for assessing combinatorial equivalence of designs;
ICs are more widely applicable for this purpose, particularly for designs with factors at more than three
levels, for which the mean aberrations by Fontana et al. depend on the level coding.

1. Introduction

Two designs are called isomorphic, if they can be obtained from each other by swaps of columns and/or
rows and/or appropriate relabelings of factor levels. Isomorphism has to be judged differently for designs
with qualitative or quantitative factors: for designs with quantitative factors, isomorphism is sometimes
called “geometric isomorphism” (see e.g. Cheng and Ye 2004); here, changes in level orderings can lead to
non-isomorphic designs. For qualitative factors, on the other hand, each relabeling of factor levels leads to an
isomorphic design; this type of isomorphism will be called “combinatorial equivalence” in this paper; the
expression “non-isomorphic” will be taken to mean “not combinatorially equivalent”. Criteria for assessing
combinatorial equivalence have to be coding-invariant in two ways: they must not depend on swapping some
levels in any design column, and for a given set of levels, they must not depend on a particular coding of
a model matrix. In their seminal paper on generalized minimum aberration (GMA), Xu and Wu (2001)
introduced the so-called normalized orthogonal coding (see Definition 2 below); this paper interprets coding
invariance related to model matrices to mean invariance against the choice of a normalized orthogonal coding.
This means, for example, that a coding invariant way of representing the model coefficients will be provided,

This paper is an extended and refocussed rewrite of Grömping (2016b).
Abbreviations: IC stands for "Interaction Contribution", ICFT for "Interaction Contribution Frequency Table", PFT for

"Projection Frequency Table", MAFT for "Mean Aberration Frequency Table", SCFT for squared canonical correlation frequency
table, and ARFT for "Average R2 Frequency Table".
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which is applicable for all choices of normalized orthogonal coding. Throughout the paper, the expression
“coding invariant” will always be used in the sense outlined in this paragraph.

Xu and Wu (2001) introduced the generalized word length pattern (GWLP) which is now widely used as the
basis of GMA: For a design with n factors, the GWLP can be written as (A0, A1, . . . , An), where A0 = 1
generally holds. For any j > 0, let Sj = {S ⊆ {1, . . . , n} : |S| = j} denote the set of all j factor sets. The
generalized count Aj of words of length j can be written as the sum of generalized word counts aj(S) from
all such sets, i.e. as Aj =

∑
S∈Sj

aj(S). The aj(S) are called projected aj values in the sequel. In many
applications, the GWLP is applied to orthogonal array designs, which implies that A1 = A2 = 0, so that
the first interesting entry is A3. In this paper, A1 = 0 is assumed (i.e., level balance of all factors), and the
number R with A1 = · · · = AR−1 = 0 and AR > 0 is called the resolution of the design; this is in line with
the conventional understanding of resolution (e.g. in Hedayat, Sloane and Stufken 1999 p.280) for R ≥ 3 and
extends the concept to R = 2, e.g. for supersaturated designs. Based on the projected a3 values, Xu, Cheng
and Wu (2004) proposed “minimum projection aberration” for resolution III designs with 3-level factors,
and Schoen (2009) used frequency tables of projected a3 values for the ranking of 18 run factorial designs.
Frequency tables of projected aj values will be called projection frequency tables (PFTjs) in this paper.

Xu and Wu (2001) discussed the statistical meaning of the aj values in terms of the confounding between
j factor interactions and the overall mean. Following a similar logic, Fontana, Rapallo and Rogantin (2016)
decomposed the projected aj values into “aberrations” for individual interaction degrees of freedom, using
the complex contrasts that were introduced by Bailey (1982). Their paper is restricted to symmetric s-level
designs, i.e. designs with all factors at s levels. They attempted to render the decompositions into aberrations
invariant against level changes by permuting the levels of the individual interaction columns, which leads
to tabulations of “mean aberrations”; the resulting tables will be called mean aberration frequency tables
(MAFTjs) in this paper. Unfortunately, MAFTs are not suitable for the assessment of combinatorial
equivalence for s > 3, as can e.g. be verified by calculating the MAFT3 for the cyclic 5-level Latin square
(Fontana et al.’s design F2) after swapping the first two levels for the third factor; Example 3 will demonstrate
that the MAFT can also change after swapping two levels of a 4-level factor. Fontana et al.’s work gave rise
to the research presented in this article; the interaction contributions (ICs) developed here are comparable to
the mean aberrations, in the sense that both decompose generalized word counts into the same number of
contributions, based on an interaction perspective. Contrary to the mean aberrations, ICs are invariant to
level swaps and to choices of normalized orthogonal coding for all numbers of levels, and they also work for
mixed-level designs.

The ICs are based on singular value decomposition (SVD); ambiguities arising from singular values with
multiplicity larger than one are resolved in two different ways, which leads to two types of interaction
contribution frequency tables (ICFT s). ICs have a statistical interpretation in terms of bias contributions of
the interaction to estimation of the overall mean, and the ICFTs can be used for assessing combinatorial
equivalence of designs. Note that, in spite of also using singular values, the approach of the present paper is
quite different from the proposal by Katsaounis, Dean and Jones (2013) of using singular values for checking
design equivalence for 2-level designs.

Recently, Grömping and Xu (2014) introduced two different decompositions of projected aR(S) values (with
R the resolution), which work for full resolution sets S only, i.e. for R factor sets with at least resolution R.
These decompositions are motivated by considering the impact of confounding in the R factor set S on
estimation of each factor’s main effects coefficients; Grömping (in press) investigated the use of tabulations
based on those decompositions. Squared Canonical Correlation Frequency Tables (SCFT s) were found to be
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quite effective in assessing combinatorial equivalence of designs; the Example and Discussion sections will
occasionally compare the discriminatory power of ICFT s and MAFTs with that of SCFTs.

In the following, Section 2 introduces notation and basic concepts, and Section 3 provides two fundamental
theorems on coding invariance that may be useful for purposes beyond the development of ICs. Section 4
develops the bias on the sample mean for estimation of the intercept from the highest order interaction in a
model with R factors based on a design of resolution R. Section 5 presents the decomposition results, relating
them to previous insights on the bias. Section 6 provides several examples, and the final section discusses
connections to further related work and reasonable future steps.

2. Notation and basic concepts

In this paper, experimental designs are taken to have N runs and n factors, with si levels for the ith factor.
Before discussing the basics for factorial designs, some matrix products are defined and rules for them
established. In the following, the superscript > denotes transposition, 1N and 0N denote column vectors of
N ones or zeroes, respectively, ei denotes a unit vector with the value “1” in position i and zeroes everywhere
else, and IN denotes an N -dimensional identity matrix. An orthogonal matrix Q is an r × r matrix with
Q>Q = QQ> = Ir. Note that multiplication with an orthogonal matrix applies rotation and/or reflection
operations only. This paper will use the term “rotation” for multiplication with any orthogonal matrix Q,
regardless whether Q involves only proper rotation (det(Q) = 1) or not.

Definition 1 (Matrix Products). The following matrix products are defined:

(i) For an m×n matrix A and an r× s matrix B, the Kronecker product is defined as the mr× ns matrix
A⊗B = (aijB)i=1,...,m,j=1,...,n.

(ii) For an na × N matrix A and an nb × N matrix B, the column wise Khatri-Rao product is defined
as the nanb ×N matrix A �c B = (a1 ⊗ b1, . . . ,aN ⊗ bN ), where ai,bi, i = 1, . . . , N denote the ith
columns of A and B, respectively, and ⊗ denotes the Kronecker product.

(iii) For an N × na matrix C and an N × nb matrix D, the row wise Khatri-Rao product is the N × nanb

matrix obtained as the transpose of the column wise Khatri-Rao product of their transposes: C�r D =
(c1 ⊗ d1, . . . , cN ⊗ dN )>, where ci and di denote the transposed ith rows of matrices C and D,
respectively.

(iv) For two m × n matrices A and B, the Hadamard or Schur or element wise product is defined as
A ∗B = (aijbij)i=1,...,m,j=1,...,n.

Lemma 1. For an N × na matrix A and an N × nb matrix B:

(i) (A�r B)(A�r B)> = (AA>) ∗ (BB>).
(ii) (A�r B)+ = (A�r B)>((AA>) ∗ (BB>))+, where the superscript “+” denotes the Moore Penrose

inverse.

Lemma 1 (i) follows from (A�c B)>(A�c B) = (A>A)∗ (B>B), which is a known result for the column wise
Khatri Rao product and the Hadamard product (see e.g. Kolda and Bader 2009, Section 2.6), by applying it
to A> and B> instead of A and B. Lemma 1 (ii) follows from the Moore Penrose inverse for the column
wise Khatri Rao product given in Kolda and Bader, or by checking the well-known Moore-Penrose conditions.
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We now consider a factorial design with n factors in N runs. The ith factor has si levels, i = 1, . . . , n, which
occur equally often, i.e. all factors are level-balanced. A full factorial model can be written as follows:

E(Y ) = µ+
n∑

i=1
Xiβi +

∑
S⊆{1,...,n},|S|≥2

XI(S)βI(S) (1)

with Y denoting the random N × 1 vector of response values, Xi the main effects model matrix for factor i
(si − 1 columns), XI(S) the interaction model matrix of the interaction among the factors in S (

∏
i∈S(si − 1)

columns), and βeffect the coefficient vector corresponding to the effect indicated in the subscript. Note that,
in case of fractional factorial designs, the model (1) may contain more coefficients than there are runs in the
experiment. In the following, the number of model matrix columns of matrix XI(S) in Equation(1) will be
denoted as df(S); in this paper, df(S) refers to the degrees of freedom of the effect I(S) in the full factorial
design and may be larger than the degrees of freedom available for the effect in a particular fractional design.

Definitions 2 and 3 provide the normalized orthogonal coding introduced by Xu and Wu (2001) and state Xu
et al.’s (2004) definition of the aj in the notation of this paper.

Definition 2 (normalized orthogonal coding). Model (1) is said to be in normalized orthogonal coding, if

(i) the columns of Xi have mean 0, are orthogonal to each other and have squared length N ,
(ii) for S ∈ Sj , the interaction matrix XI(S) is the row wise Khatri-Rao product of the j main effects model

matrices Xi, i ∈ S.

Definition 3 (projected aj values). For S ∈ Sj , with XI(S) the interaction model matrix in normalized
orthogonal coding, aj(S) = 1>NXI(S)X>I(S)1N/N

2.

The next lemma relates main effects model matrices in different normalized orthogonal codings to each other.

Lemma 2. If Xi and X̃i are both N × (si − 1) main effects model matrices in normalized orthogonal coding
for factor i, there is an orthogonal (si − 1)× (si − 1) matrix Q such that X̃i = XiQ⇔ X̃iQ> = Xi.

Lemma 2 is obvious from noting that different orthogonal bases for the factor i main effect with all columns
of the same squared length N can only be obtained from each other by rotation and reflection operations.
Note that results generalize to complex coding by changing the transpose to conjugate transpose.

The paper makes use of SVD: an m × n matrix A can be written as UDV> with orthogonal matrices U
(m×m) and V (n× n), and an m× n diagonal matrix D of min(m,n) non-negative singular values ζi. The
columns of U and V are called left and right singular vectors, respectively. The non-zero squared singular
values coincide with the non-zero eigen values of the positive semidefinite matrices A>A and AA>. If all
singular values are distinct, the first min(m,n) columns of matrices U and V are unique, up to sign switches
of corresponding column pairs ui and vi. Where relevant, this paper enforces uniqueness by choosing signs
such that the column means of U are non-negative. More serious ambiguities can arise from multiple singular
values of the same size, which lead to non-unique groups of singular vectors: if N × r sub matrices Usub and
Vsub correspond to a singular value ζ with multiplicity r > 1, these can be replaced by the pair Lsub and
Msub with Lsub = UsubQ and Msub = VsubQ with a suitable orthogonal r × r matrix Q.

The final lemma of this section provides an auxiliary result that can be used to relate coding changes to
SVDs.
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Lemma 3. Let X and X̃ be two different matrices with identical dimensions. The statements I and II are
equivalent:

I. X and X̃ have SVDs with the same U and D and different V.
II. X̃ = XQ with an orthogonal matrix Q 6= I.

Proof. II implies I: Let X = UDVX
>. Then X̃ = XQ = UDV>XQ = UDV>

X̃
, with VX̃ = Q>VX an

orthogonal matrix (since the product of two orthogonal matrices is again an orthogonal matrix).
I implies II: X = UDV>X and X̃ = UDV>

X̃
; choose the orthogonal matrix Q = VXV>

X̃
.

3. Coding invariance

This section establishes two general results on coding invariance, which will constitute the basis for ICFTs:
Theorem 1 shows the coding invariance of XI(S)X>I(S); Corollary 1 states that matrices U and D of the SVD
are coding invariant, while V depends on the coding; Corollary 2 makes clear that interaction model matrices
for different codings can be obtained from each other by post-multiplication with an orthogonal matrix, and
Theorem 2 introduces a coding invariant way of specifying the model coefficients.

Theorem 1. The matrix XI(S)X>I(S) does not depend on the choice of normalized orthogonal coding.

Proof. According to Lemma 1, XI(S)X>I(S) can be written as the Schur product of matrices XiX>i , i ∈ S,
with Xi a main effects model matrix in normalized orthogonal coding. Because of Lemma 2, XiX>i = X̃iX̃>i
for two choices Xi and X̃i of normalized orthogonal coding for factor i.

Corollary 1. For the SVD XI(S) = UDV>, the matrices U and D do not depend on the choice of normalized
orthogonal coding, while V depends on that choice.

Proof. XI(S)X>I(S) = UDV>VD>U> = UDD>U> is the eigen value decomposition of the coding invariant
matrix XI(S)X>I(S); X>I(S)XI(S) = VD>U>UDV> = VD>DV> is the eigen value decomposition of the
coding dependent matrix X>I(S)XI(S).

Corollary 2. Let XI(S) and X̃I(S) denote two interaction model matrices for the factors in S ⊆ {1, . . . , n}
in normalized orthogonal coding. There is an orthogonal matrix Q such that X̃I(S) = XI(S)Q.

Proof. The result follows immediately from Corollary 1 and Lemma 3.

Theorem 2. Consider model (1) denoted in normalized orthogonal coding for an unreplicated full factorial
design in N =

∏n
i=1 si runs, with si the number of levels for the ith factor. For an arbitrary effect “eff”,

denote the model matrix in any particular choice of normalized orthogonal coding as Xeff = UDV>X and the
corresponding coefficient vector as βeff.
Define c = V>Xβeff ⇔ βeff = VXc. Then, the following holds:

(i) The contribution of effect “eff” to Equation (1) can be written as Xeffβeff = UDc.
(ii) For a different normalized orthogonal coding with the model matrix X̃eff and the corresponding coefficient

vector γeff, there is an SVD X̃eff = UDV>
X̃

such that γeff = VX̃c with the same vector c.
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Proof. Part (i) follows from V>XVX = Idf(eff) after replacing Xeff with its SVD and βeff with VXc: Xeffβeff =
UDV>XVXc = UDc. For part (ii), noting that X̃eff = XeffQ for a suitable orthogonal matrix Q according to
Lemma 2 or Corollary 2, Lemma 3 implies the existence of a VX̃ such that X̃eff = UDV>

X̃
. Thus, X̃effγeff =

UDV>
X̃

γeff. Inserting an identity matrix changes this into
(
UDV>

X̃
VX̃V>X

)(
VXV>

X̃
γeff

)
= XeffVXV>

X̃
γeff.

The matrix Xeff has full column rank, so that equality of both Xeffβeff and XeffVXV>
X̃

γeff to UDc implies
the equation βeff = VXV>

X̃
γeff, which is equivalent to γeff = VX̃V>Xβeff = VX̃c.

Theorem 2 assumes a full factorial design in order to make sure that all effect model matrices in a full factorial
model are of full column rank. The result holds without change for models with fewer runs, if their model
matrices are chosen as appropriate subsets of rows of the full factorial model matrices. However, of course,
there may be estimability issues with model coefficients due to rank deficiencies. Furthermore, note that the
coding invariant representation c of the coefficient vector is unique up to sign changes only, if all singular
values have multiplicity 1; as was mentioned in Section 2, this paper enforces uniqueness by choosing signs
such that all column means of matrix U are non-negative. If there are singular values with multiplicity r > 1,
there are more difficult ambiguities, because the matrices U and V are non-unique (see also Section 5.2); in
those cases, matrix U and vector c have to be kept together in suitable pairs.

4. The bias of the intercept estimate

Now, assume that we have R factors (R the resolution), model (1) with n = R is the true model, and we
wrongly fit the smaller model

E(Y ) = µ+
R∑

i=1
Xiβi +

∑
S⊆{1,...,R},2≤|S|≤R−1

XI(S)βI(S) (2)

omitting the highest order interaction (for R = 2, the third summand in (2) is omitted). The estimate for µ
is Ȳ , with expectation µ+ 1>NXI({1,...,R})βI({1,...,R})/N , i.e., bias 1>NXI({1,...,R})βI({1,...,R})/N . Note that,
because of the design’s resolution, the omission of main effects or lower order interactions with any factor
would not bias the intercept estimate, i.e., the bias would remain the same if we would, e.g., omit an entire
factor instead of omitting only the R factor interaction. Of course, this bias strongly depends on the sizes
of the unknown coefficients in βI({1,...,R}). According to Theorem 2, the effect of the unknown coefficients
can be considered in terms of the coding invariant representation through the vector c; it is customary to
consider length 1 vectors. Note that β = Vc has length 1 if and only if c has length 1.

As was already pointed out by Xu and Wu (2001), aR({1, . . . , R}) is an indicator of the bias for the intercept
from the R factor interaction. In an overall way, according to Definition 3, aR({1, . . . , R}) is the sum of
squares of the multipliers 1>NXI({1,...,R})/N with which the unknown interaction parameters in βI({1,...,R})
enter the bias; it is thus a Frobenius norm and as such provides an upper bound for the sum of squares of the
bias vector: ||1>NXI({1,...,R})βI({1,...,R})/N ||22 ≤ aR({1, . . . , R})||βI({1,...,R})||22. The bound is exact for the
worst-case βI({1,...,R}) which is collinear to X>I({1,...,R})1N (because this is collinear to the first right singular
vector of the row vector 1>NXI({1,...,R})). That worst-case βI({1,...,R}) (of course) depends on the coding,
while the worst-case bias directly depends on the model contribution UDc and is thus coding invariant; the
details are given in Lemma 4.
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Lemma 4. Let the true model be model (1) with n = R, and XI({1,...,R}) = UDVX the model matrix
in normalized orthogonal coding for the interaction I({1, . . . , R}), βI({1,...,R}) = VXc the corresponding
coefficient vector with c a df({1, . . . , R})× 1 vector, and ū = 1>NU/N .

(i) Then the bias for the estimation of µ by Ȳ = 1>NY/N can be written as ūDc =
∑min(N,df({1,...,R}))

i=1 ciζiūi

with ūi the average of the ith column of matrix U.
(ii) The bias from (i) is coding invariant.
(iii) The worst-case squared bias for a length 1 vector βI({1,...,R}) is ūDD>ū> and is attained for

c = D>ū>/
√

ūDD>ū>.

Proof. In terms of c, the bias can be written as
1>NXI({1,...,R})βI({1,...,R})/N = ūDc =

∑min(N,df({1,...,R}))
i=1 ciζiūi.

Part (ii) follows from Corollary 1 and Theorem 2. For Part (iii), note that the worst case absolute bias for a
length 1 c (representing a length 1 βI({1,...,R})) is the singular value of the row vector ūD, attained for c
equal to the right singular vector of ūD.

Remark. Part (iii) of Lemma 4 provides the vector c for the coding invariant representation of the worst-case
βI({1,...,R}) and expresses the worst-case squared bias of Ȳ as an estimate for µ in terms of c. Since we already
saw that that worst case squared bias equals aR({1, . . . , R}), part (iii) of Lemma 4 also provides a decompo-
sition of aR({1, . . . , R}) into the df({1, . . . , R}) coding invariant summands ζ2

i ū
2
i , i = 1, . . . , df({1, . . . , R}).

The same decomposition will be obtained below with a related but different reasoning, and the coefficient
vectors for which the squared bias equals a particular summand will be given.

According to Lemma 4 (i), the squared bias of Ȳ as an estimator for µ can be written as

β>I({1,...,R})X>I({1,...,R})1N1>NXI({1,...,R})βI({1,...,R})/N
2 =

min(N,df({1,...,R}))∑
i=1

ciζiūi

2

. (3)

Considering a length 1 c (corresponding to a length 1 β), the simplest such choices are c = ei, i = 1, . . . , df(S),
for which (3) becomes (ζiūi)2 and βI({1,...,R}) equals the ith right singular vector vi of XI({1,...,R}) (depending
on the choice of normalized orthogonal coding). The (ζiūi)2 are exactly the summands of the worst case
squared bias given in Lemma 4 (iii). The next section states all results on the coding invariant decomposition of
aj(S) for j factor sets S; the generalization from R factor sets of resolution R is a switch from considering the
total bias of Ȳ as an estimate for µ, which solely consists of the contribution by the interaction I({1, . . . , R})
to the bias contribution of the interaction I(S) as one of possibly several bias contributions in a j-factor set
S of resolution R ≤ j.

5. Coding invariant decomposition of aj(S) and its relation to the
bias

This section assembles results on the coding invariant decomposition of aj(S) and its relation to the bias of
Ȳ as an estimator for µ from confounding with the highest order interaction I(S) (Section 5.1). The case
of singular values with multiplicity r > 1 will be given special treatment in Section 5.2, since such singular
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values imply nontrivial non-uniqueness of singular vectors, and thus also of the “interaction contributions” to
be defined in Section 5.1.

5.1. The decomposition

According to Definition 3, aj(S) = 1>NXI(S)X>I(S)1N/N
2 = ūDD>ū>, with ū the row vector of column

averages of U. This is an alternative route to the decomposition that was already provided in Lemma 4
(iii). The next theorem summarizes this representation, the relation of the summands to the bias, and the
conditions under which the decomposition is unique.

Theorem 3. Let ζi = ζi(XI(S)) denote the ith singular value of the matrix XI(S), ūi the column average of
the corresponding ith left singular vector.

(i) Then the projected aj(S) value can be decomposed as

aj(S) =
min(N,df(S))∑

i=1
ζ2

i ū
2
i . (4)

(ii) The summand ζ2
i ū

2
i of (4) is the contribution of the interaction I(S) to the squared bias of Ȳ as an

estimator for µ in case βI(S) = vi.
(iii) If all non-zero singular values have multiplicity one, the decomposition (4) is unique.
(iv) Assuming there is at least one non-zero singular value ζi with multiplicity ri > 1 and corresponding

N×ri matrix Usub,i of left singular vectors, the decomposition (4) is unique if and only if 1>NUsub,i = 0>ri

for all such pairs ζi and Usub,i.

Proof. Part (i) directly follows from Definition 3 (see above). For part (ii), note that c = ei implies
βI(S) = VXei = vi; the assertion follows from Equation (3). For part (iii), note that, if all non-zero singular
values are unique, all corresponding columns of the matrix U are unique up to sign changes; sign changes do
not affect the squared column averages.
Regarding part (iv), a non-zero singular value ζi with multiplicity ri > 1 has a corresponding N × ri matrix
Usub,i of left singular vectors whose columns are non-unique, as they can be rotated or reflected in arbitrary
ways. However, if 1>NUsub,i = 0>ri

, the same is also true for all rotated versions Lsub,i = Usub,iQ, i.e.
1>NLsub,i = 1>N0>ri

. Thus, all the corresponding summands in (4) are zero, regardless of the choice of columns.
If this is the case for all matrices of left-singular vectors corresponding to non-zero singular values with
multiplicity ri > 1, (4) yields a unique decomposition. Otherwise, the decomposition will change, depending
on the arbitrary choice of left singular vectors.

Definition 4 (interaction contributions). (i) For a set S ∈ Sj , the terms ζ2
i ū

2
i , i = 1, . . . , df(S), are called

the interaction contributions for the set. For N < df(S), the last df(S)−N interaction contributions are
defined as zeroes. (ii) For an entire design in n ≥ j factors, the interaction contributions of all j factor sets
S ∈ Sj are called the interaction contributions of order j.

The interaction contributions of Definition 4 are coding invariant, but may be non-unique, if there are non-zero
singular values with multiplicity larger than 1.
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5.2. Resolving ambiguities

In the following, two different but related ways of obtaining unique summands for ambiguous cases in
Equation (4) are presented: a concentrated allocation (indexed with “c”) concentrates the entire sum of all
ambiguous summands from a particular singular value ζ with multiplicity r in a single summand and leaves
r − 1 zero summands; an even allocation (indexed with “e”) distributes the sum evenly over r summands.
Initially, a remark collects the known facts about rotations of singular spaces for this context.
Remark (rotations). Let ζ be a singular value with multiplicity r for matrix XI(S), denoting the N × r
matrix Usub and the df(S)× r matrix Vsub as the corresponding columns of matrices U and V. Consider an
arbitrary orthogonal r × r matrix Q with Lsub = UsubQ and Msub = VsubQ, and define ū = 1>NU/N and
l̄ = 1>NL/N , with ūsub and l̄sub denoting the 1× r sub vectors corresponding to the singular space of ζ.

(i) l̄sub = ūsubQ.
(ii) l̄sub = 0r if and only if ūsub = 0r.
(iii) For ūsub 6= 0r, the total contribution ζ2∑r

i=1 l̄
2
sub,i = ζ 2̄l>sub̄lsub = ζ2ū>subūsub to (4) is unaffected by

the choice of Q, while the individual summands can (strongly) depend on Q.
(iv) XI(S),sub = ζUsubV>sub = ζLsubM>

sub is the N × df(S) summand of XI(S) that corresponds to the
singular space for ζ; it is invariant to the chosen rotation Q.

(v) The group’s contribution to XI(S)βI(S) = UDcU = LDcL can be written as XI(S),subβI(S) =
ζUsubcU,sub = ζLsubcL,sub, where cU,sub and cL,sub denote the suitable r×1 sub vectors of the rotation
dependent vectors cU and cL, respectively.

The following two remarks provide the details for the concentrated or even ICs, respectively.
Remark (the concentrated rotation). Let ζ be a singular value with multiplicity r for matrix XI(S), applying
all notations as given in the remark on rotations.

(i) Q can be chosen such that l̄sub = ||ūsub||2e>1 ; this is called the concentrated rotation. It can be obtained
as Qc = H> with H the Householder transformation matrix that changes the direction of ūsub to
collinearity with e1.
The corresponding summands of (4) are ζ2||ūsub||22 and r − 1 zeroes.

(ii) For the coefficient vector βI(S), the bias contribution from the group is
1>NXI(S),subβI(S)/N = ζ l̄subM>

subβI(S) = ζ||ūsub||2m>sub,1βI(S), where msub,1 is the first right singular
vector in terms of the concentrated rotation for the group (i.e. the first column of Msub = VsubH>). It
simplifies to ζ||ūsub||2cL,sub,1 = ζ|l̄sub,1|cL,sub,1.

(iii) Among length 1 vectors βI(S), βI(S) = ±msub,1 maximizes the squared bias contribution of the group,
and the maximum is ζ2||ūsub||22 = ζ2 l̄2sub,1. The corresponding vector cL is the vector ±ei with i the
position of the first element of cL,sub.

The even rotation does the opposite of the concentrated rotation: instead of concentrating the entire
contribution on one degree of freedom, it allocates it as evenly as possible. The rotation matrix Qe for
achieving the even allocation can be obtained by making use of a rectangular r-simplex, which is the
generalization of a tri-rectangular tetrahedron to r dimensions: the r “legs” (=edges neighboring the apex)
all meet at right angles at the apex; for the special r-simplex used for the even case, the apex is the origin 0r,
and all legs have length 1, which implies that the base of the r-simplex is a regular r − 1-simplex, e.g., an
equilateral triangle in case r = 3. The altitude of such a rectangular r-simplex has the same angle acos(1/

√
r)

to all legs and has length 1/
√
r, and the average of all legs equals the altitude; a prototype of such an

r-simplex has the vertices 0r, e1, . . . , er, where the unit vectors are in r-dimensional space (the base of this

11



r-simplex is called the “standard simplex” in dimension r − 1). The following remark will be based on a
matrix R whose columns consist of the r vertices (except for the apex 0r) of a rectangular r-simplex oriented
such that the altitude is collinear to e1; these vertices also define the r legs of length 1, and they yield an
orthogonal matrix. The base point of the altitude of this simplex is e1/

√
r (implying that this is also the

average of the columns of R), and the simplex is then rotated such that the altitude becomes collinear with
the vector ū. Note that there are infinitely many possible matrices R belonging to a rectangular r-simplex
with length 1 legs, apex 0r and altitude collinear to e1, because there are infinitely many possible rotations.
This implies that – though the even interaction contributions are unique – the corresponding pairs of singular
vectors are not.
Remark (the even rotation). Let ζ be a singular value with multiplicity r for matrix XI(S), applying all
notations as given in the remark on rotations.

(i) Q can be chosen such that l̄sub = ||ūsub||21r
>/
√
r; this is called the even rotation. It can be obtained

as Qe = H>R, where H> is the inverse of the Householder transformation matrix that changes the
direction of ūsub to collinearity with e1 (see remark on the concentrated rotation) and R is an orthogonal
matrix composed of the length 1 legs of a rectangular r-simplex with apex 0r and altitude collinear to
e1. This achieves an equal angle of ū>sub to all columns of Qe, and an equal angle of 1N to all columns
of Lsub = UsubQe.

(ii) For the coefficient vector βI(S), the bias contribution of the group in terms of the even rotation is
1>NXI(S),subβI(S)/N = ζ l̄subM>

subβI(S) = ζ||ūsub||21NM>
subβI(S)/

√
r. It simplifies to ζ l̄subcL,sub.

(iii) Each length 1 vector βI(S) = ±msub,i, i = 1, . . . , r, has the same squared bias contribution ||ūsub||22/r;
the vectors c corresponding to these contributions are suitably chosen unit vectors.

(iv) The normalized average of the r vectors from (iii), i.e., any vector βI(S) = Msubdiagr(±1)1r/
√
r,

maximizes the squared bias contribution of the group among all length 1 vectors, where diagr(±1)
denotes an r-dimensional diagonal matrix whose diagonal elements are arbitrary combinations of “+1” or
“−1” values. The maximum is (of course) identical to that given for the concentrated case (ζ2||ūsub||22).
The maximizing length 1 vector cL has zeroes everywhere, except for cL,sub = 1>r /

√
r.

The final remark of this section discusses the relation between the two cases.
Remark (relation between concentrated and even rotations ). Let ζ be a singular value with multiplicity r for
matrix XI(S), applying all notations as given in the remark on rotations, and add suffixes “c” and “e” for the
concentrated and even case, respectively.

(i) The group’s normalized average right singular vector Msub.e1r/
√
r of the even rotation (see part (iv) of

the remark on the even rotation, where all permissible sign changes were included through the diagonal
matrix) coincides with the group’s first right singular vector msub,c,1 of the concentrated rotation.

(ii) Part (i) of this remark holds for all corresponding pairs of Msub.e and msub,c,1. Note in particular that
non-identity diagonal matrices in part (iv) of the remark on the even rotation correspond to a modified
Msub,e with an identity matrix instead, implying modified Lsub,e, Msub,c and Lsub,c, and the identical
maximum ζ2||ū||22.

Proof. Let H denote the Householder transformation introduced for the concentrated rotation, R a matrix
derived from a rectangular r-simplex as introduced for the even case. Then, according to the previous remarks,
Lsub,c = UH> and Lsub,e = UH>R = Lsub,cR as well as Msub,c = VH> and Msub,e = VH>R = Msub,cR.
Furthermore, the coincidences Lsub,e1r/

√
r = lsub,c,1 and Msub,e1r/

√
r = msub,c,1 result from lsub,c,1 =

Lsub,ce1 and msub,c,1 = Msub,ce1, together with the fact that R1r/
√
r is
√
r times the average of the legs of

the r-simplex that defined R; this average is the altitude e1/
√
r.
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Table 1: Example design in two 2-level factors and one 4-level factor, with ICFTs.

1 2 3 4 5 6 7 8
A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 2 1 3 3 1 2 0

0 1/3 1
concentrated 2 0 1
even 0 3 0

5.3. Interaction contribution frequency tables

The interaction contributions of Definition 4 lend themselves to tabulation and can be used for assessing how
the bias depends on the vector of interaction coefficients as well as for distinguishing non-isomorphic designs
with the same projected aj values. It will be most interesting to consider such tables for projected aR values,
with R the resolution of the design. Contrary to the decomposition results from Grömping and Xu (2014),
however, this decomposition works for projected aj values with arbitrary j; the statistical interpretation as a
bias contribution works as well, if it is acknowledged that this is not the only contribution towards the bias
of Ȳ for µ.

Definition 5 (interaction contribution frequency tables). The table of the (ζiūi)2 obtained from all sets
S ∈ Sj , with uniqueness enforced as indicated in Section 5.2 (if necessary), is called the Interaction
Contribution Frequency Table of order j, or ICFT j; it comes in the versions ICFT j,c and ICFT j,e, with “c”
short for concentrated and “e” short for even.

6. Examples

This section gives several examples. Where possible (i.e., for symmetric designs), MAFTs by Fontana et al.
(2016) are calculated in addition to ICFT c and ICFT e. In most cases, PFTR are given as well, with R the
resolution (for an R factor set, PFTR reduces to an indicator for aR). For some smaller designs, the worst
case interaction parameter vectors according to Lemma 4 are also given; these are sometimes but not always
simply the first right singular vectors of the concentrated rotation; Example 5 contains a different case. Some
of the designs are at least “generalized regular” or “Abelian group regular” (see Kobilinski, Monod and Bailey
in press; Grömping and Bailey 2016). They are simply called “regular” in the sequel. Calculations of PFT s
and ICFT s have been done with R package DoE.base (Grömping 2016), while MAFT s have been calculated
with separate R functions.

The first worked example uses the design given in Table 2 of Grömping and Xu (2014), which is given in
Table 1 for convenience, together with both types of ICFT.

Example 1. A3 = a3 ({1, 2, 3}) = 1 for the regular design of Table 1: the AB interaction is completely
confounded with the 0/2 vs 1/3 contrast of factor C. This implies the ICFT s as shown in the table. Factors
A and B are coded as -1/+1 (unique normalized orthogonal coding), factor C is coded with normalized
Helmert coding. With S = {1, 2, 3}, the coding-dependent 8× 3 matrix XI(S) and its coding invariant 8× 8
cross product XI(S)X>I(S) are given in Table 2. The three non-zero eigen values of XI(S)X>I(S), equal to
the non-zero squared singular values of XI(S), are equal to (8, 8, 8), i.e. there are three non-unique pairs of
singular vectors. With the SVD algorithm used in R for Windows, the initial squared column means of the
matrix U are (1/48, 1/16, 1/24); the contributions to a3(S) are thus 8 times these values, i.e., (1/6, 1/2, 1/3).

13



Table 2: Model matrix and coding invariant outer product for the design of Table 1.

A1:B1:C1 A1:B1:C2 A1:B1:C3
-1.414214 -0.8164966 -0.5773503
0.000000 1.6329932 -0.5773503
-1.414214 0.8164966 0.5773503
0.000000 0.0000000 -1.7320508
0.000000 0.0000000 -1.7320508
-1.414214 0.8164966 0.5773503
0.000000 1.6329932 -0.5773503
-1.414214 -0.8164966 -0.5773503

1 2 3 4 5 6 7 8
3 -1 1 1 1 1 -1 3
-1 3 1 1 1 1 3 -1
1 1 3 -1 -1 3 1 1
1 1 -1 3 3 -1 1 1
1 1 -1 3 3 -1 1 1
1 1 3 -1 -1 3 1 1
-1 3 1 1 1 1 3 -1
3 -1 1 1 1 1 -1 3

Table 3: Coding invariant outer product for regular 9 run design in three 3-level factors.

1 2 3 4 5 6 7 8 9
8 2 2 2 -1 2 2 2 -1
2 8 2 2 2 -1 -1 2 2
2 2 8 -1 2 2 2 -1 2
2 2 -1 8 2 2 2 -1 2
-1 2 2 2 8 2 2 2 -1
2 -1 2 2 2 8 -1 2 2
2 -1 2 2 2 -1 8 2 2
2 2 -1 -1 2 2 2 8 2
-1 2 2 2 -1 2 2 2 8

Concentrating the entire contribution on the first vector, ICFT3,c shows the sum “1” from these as a single
entry “1” and two zeroes for the remaining contributions, while distributing the contribution evenly, ICFT3,e
shows three 1/3 values instead. The right singular vector related to the only non-zero singular value in the

concentrated case is v1 =
(
−
√

1/2,
√

1/6,−
√

1/3
)>

, i.e. with this coding, the largest bias on the intercept
resulting from the three factor interaction occurs for coefficient vectors proportional to this v1. The even
vectors are non-unique, but their normalized average coincides with the above v1.

Example 2: Consider a regular design in 9 runs with three 3-level factors and an interaction model matrix as
given in Example 1 of Grömping and Xu (2014), for which A3 = a3({1, 2, 3}) = 2. With S = {1, 2, 3}, the
coding invariant cross product XI(S)X>I(S) is given in Table 3. The eigen values of XI(S)X>I(S), equal to the
first 8 squared singular values of XI(S), are ζ2

1 = 18, ζ2
2 = · · · = ζ2

7 = 9, ζ2
8 = 0, i.e. there are two unique and six

non-unique pairs of singular vectors. In this case, ū = (1/3, 0, 0, 0, 0, 0, 0, 0). Thus, the non-uniqueness of the
second to seventh pairs of singular vectors is irrelevant (see Theorem 3 (iv)), and we obtain a unique ICFT3

that shows one interaction contribution 18/9 = 2 and seven zeroes. The right singular vector corresponding
to the non-zero contribution is (−0.433,−0.25,−0.25, 0.433, 0.25,−0.433,−0.433,−0.25)> (rounded to three
digits), i.e. the most harmful coefficient vectors in terms of bias for the intercept are proportional to this
vector for the coding used. For this symmetric 3-level design, the mean aberrations by Fontana et al. (2016)
are well-defined and coding invariant; they consist of two ones and six zeroes.

Example 3: Table 4 shows the two non-isomorphic GMA designs for two 4-level factors in 8 runs; both have
A2=1, and the first one is regular. The table shows that they can be distinguished by their ICFT2,e but not
by their ICFT2,c. The worst case length 1 parameter vectors are again obtainable as the first right singular
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Table 4: Two resolution II designs in two 4-level factors (d1=(A,B1) and d2=(A,B2)), with metrics.

A B1 B2
0 0 0
0 1 1
1 2 2
1 3 3
2 0 0
2 1 3
3 2 1
3 3 2

0 1/12 1/6 1/5 1/3 1
d1 ICFT c 8 0 0 0 0 1

ICFT e 4 0 0 5 0 0
MAFTorig. 7 0 0 0 2 0
MAFT swapped 5 0 4 0 0 0

d2 ICFT c 8 0 0 0 0 1
ICFT e 6 0 0 0 3 0
MAFTorig. 3 4 2 0 0 0
MAFT swapped 7 0 0 0 2 0

Table 5: Metrics for L18, entire design (left) and symmetric portion (right).

0 1/6 1/2 2/3 1 2
PFT 12 0 28 9 6 1
ICFT c 320 0 28 9 6 1
ICFT e 287 36 40 0 0 1

0 1/4 1/2 1 2
PFT 0 0 28 6 1
ICFT c 245 0 28 6 1
ICFT e 239 0 40 0 1
MAFT 198 80 0 2 0

vectors (not shown). The mean aberrations depend on the level allocation: the table shows the MAFTs
for the printed designs and for a version with levels 1 and 2 in factor A swapped. Also note that the mean
aberrations do not sum to the overall A2 in this case (their sum is only 2/3 for both designs with both level
allocations); it was already mentioned by Fontana et al. (2016) that mean aberrations are only guaranteed to
sum to the generalized word count if the number of factor levels is a prime.

Example 3 underlines the fact that MAFT s for designs with factors at more than three levels depend on the
level coding, which was already mentioned in the introduction for one of the 5-level designs investigated by
Fontana et al. For both of these 5-level designs, ICFT3,e and ICFT3,c coincide with each other, and the two
unique ICFTs are also identical (63 zeroes and one “4” each).

Example 4: Table 5 shows metrics for the classical L18, which is a mixed level design, and for its symmetric
portion of seven 3-level factors. For the entire design, there is no MAFT, since MAFT s have so far not been
defined for mixed-level designs. Note that the concentrated ICFT in this case yields exactly one non-zero IC
from each projection, i.e. the non-zero entries of ICFT3,c coincide with those of PFT3. When changing from
concentrated to even ICFT, the “1” entries are from a group of two identical singular values, so that they turn
into two “1/2” entries each, while the “2/3” are from a group of four identical singular values and thus turn
into four “1/6” entries each. The entry “2” corresponds to a unique singular value and thus remains intact.
For the symmetric portion, a3 values are “1/2”, “1” or “2” (the “2/3” came from mixed level projections).
The MAFT reflects that mean aberrations split the a3 values into even smaller portions than the even ICFT :
the entries that were not split by ICFT (“1/2” and “2” entries) are split into two halves each, the “1” entries
that were split into two halves by ICFT e are split into four “1/4” entries each by mean aberrations.

For designs with n > R factors, the behavior of PFTR, ICFTR and MAFTR is entirely driven by the behaviors
of the

(
n
R

)
R factor sets. For the last two examples, we therefore consider a3 values, ICFTs and MAFTs

for 3 factor sets only; furthermore, we only consider pure-level designs with 3-level factors, for which both
ICFTs and MAFTs can be calculated and are coding invariant. Example 5 considers a particular 36 run
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Table 6: Columns 13 to 15 from the 36 run Taguchi orthogonal array (cell entries are levels of factor C).

A\B 0 1 2
0 0,0,0,1 0,2,2,2 1,1,1,2
1 0,2,2,2 1,1,1,2 0,0,0,1
2 1,1,1,2 0,0,0,1 0,2,2,2

0 0.201 7/16 0.674 7/8
a3 0 0 0 0 1
ICFT c 6 1 0 1 0
ICFT e 6 1 0 1 0
MAFT 6 0 2 0 0

design with three 3-level factors, for which the concentrated and even ICFT coincide but involve more than
one singular vector. This example is interesting both for ICFT itself and for comparing ICFT with MAFT ;
Example 6 considers all non-isomorphic 36 run designs with three 3-level factors.

Example 5: Table 6 shows columns 13 to 15 of the well-known Taguchi 36 run orthogonal array (see
NIST / Sematech 2016), together with its metrics; this design has a3 = 7/8 = 0.875 and is isomorphic
to one of the non-isomorphic 24 designs to be considered in the next example. Both ICFTs yield the
same unequal non-zero subdivision of the a3 value into ICs (0.201 + 0.674 = 0.875), while the mean
aberrations subdivide 7/8 into two equal non-zero portions. Such comparisons between ICFT s and MAFT s
may eventually help understand the difference between the methods. Let us consider more detail for the
ICFT of this design: the length 1 parameter vectors that correspond to the individual bias contributions
of the larger and smaller positive ICs are (−0.083,−0.493,−0.493, 0.083,−0.493, 0.083, 0.083, 0.493)> and
(0.493,−0.083,−0.083,−0.493,−0.083,−0.493,−0.493, 0.083)>, respectively. The entire bias potential of the
three-factor interaction from this design is activated for the length 1 parameter vector βI({1,...,3}) = Vc with
the c from Lemma 4 (iii), yielding (0.164,−0.472,−0.472,−0.164,−0.472,−0.164,−0.164, 0.472)> (weighted
average of the previous two vectors with unequal weights). As the design appears to be quite imbalanced (it
consists of one Latin square replicated three times combined with another Latin square replicated once), the
imbalanced behavior of ICFT appears adequate. It is conjectured that average aberration, by averaging over
permutations of the levels of interaction columns, removes some of the imbalance, while ICFT keeps it intact,
leading to an unequal subdivision of the a3 value. The exact nature of this behavior remains to be studied.

Example 6: There are 24 non-isomorphic 36 run designs in three 3-level factors, obtained from Pieter
Eendebak. Tables 6 to 10 provide their a3 values and ICFT and MAFT and their ranks in terms of a3; the
designs have been arranged in four groups of similar patterns plus the singleton of Table 6 (isomorphic to the
design tabulated by Pieter Eendebak, rank 20 in terms of a3). There are instances of coincidence between
concentrated and even ICs, and instances where even ICs are halves, thirds or quarters of concentrated ICs,
and there are many instances for which mean aberrations coincide with even ICs or are halves of even ICs,
but also instances for which mean aberrations provide entirely different splits of the a3 value from even ICs
(see also Example 5).

The 24 designs contain three groups that cannot be distinguished by their a3 values: three times a3 = 5/12
(one in Table 8 and two in Table 9), five times a3 = 1/2 (all in Table 7) and three times a3 = 2/3 (one each
in Tables 8, 9 and 10). The latter can be distinguished by both versions of ICFT and by MAFT, the designs
with a3 = 5/12 from Table 9 cannot be distinguished by any of the metrics, while they can be distinguished
from the one in Table 8 by both versions of ICFT and by MAFT. For the five arrays with a3 = 1/2, things
are more complicated: numbering the designs from 1 to 5 in the order of appearance in Table 7, designs 1
and 5 cannot be distinguished by any of the metrics; MAFT groups these two together with design 2 and
distinguishes this triple from the two singletons 3 and 4, while ICFT c groups them together with design 4
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Table 7: Metrics for non-isomorphic 36 run 33 designs, Part I (denominators 2a, a ∈ N0).

rank metric 0 1/32 1/16 3/32 1/8 3/16 1/4 3/8 1/2 9/16 5/8 3/4 1 9/8 5/4 2
24 a3 . . . . . . . . . . . . . . . 1
24 ICFT c 7 . . . . . . . . . . . . . . 1
24 ICFT e 7 . . . . . . . . . . . . . . 1
24 MAFT 6 . . . . . . . . . . . 2 . . .
23 a3 . . . . . . . . . . . . . . 1 .
23 ICFT c 6 . . . 1 . . . . . . . . 1 . .
23 ICFT e 6 . . . 1 . . . . . . . . 1 . .
23 MAFT 4 . 2 . . . . . . 2 . . . . . .
22 a3 . . . . . . . . . . . . 1 . . .
22 ICFT c 7 . . . . . . . . . . . 1 . . .
22 ICFT e 6 . . . . . . . 2 . . . . . . .
22 MAFT 4 . . . . . 4 . . . . . . . . .
19 a3 . . . . . . . . . . . 1 . . . .
19 ICFT c 6 . . . . . 1 . 1 . . . . . . .
19 ICFT e 5 . . . 2 . . . 1 . . . . . . .
19 MAFT 2 . 4 . . . 2 . . . . . . . . .
15 a3 . . . . . . . . . . 1 . . . . .
15 ICFT c 6 . . . 1 . . . 1 . . . . . . .
15 ICFT e 6 . . . 1 . . . 1 . . . . . . .
15 MAFT 4 . 2 . . . 2 . . . . . . . . .
9 a3 . . . . . . . . 1 . . . . . . .
9 ICFT c 7 . . . . . . . 1 . . . . . . .
9 ICFT e 4 . . . 4 . . . . . . . . . . .
9 MAFT . . 8 . . . . . . . . . . . . .
9 a3 . . . . . . . . 1 . . . . . . .
9 ICFT c 6 . . . 1 . . 1 . . . . . . . .
9 ICFT e . 4 . 4 . . . . . . . . . . . .
9 MAFT . . 8 . . . . . . . . . . . . .
9 a3 . . . . . . . . 1 . . . . . . .
9 ICFT c 5 . . . 1 2 . . . . . . . . . .
9 ICFT e 5 . . . 1 2 . . . . . . . . . .
9 MAFT 4 . 2 . . 2 . . . . . . . . . .
9 a3 . . . . . . . . 1 . . . . . . .
9 ICFT c 7 . . . . . . . 1 . . . . . . .
9 ICFT e 7 . . . . . . . 1 . . . . . . .
9 MAFT 6 . . . . . 2 . . . . . . . . .
9 a3 . . . . . . . . 1 . . . . . . .
9 ICFT c 7 . . . . . . . 1 . . . . . . .
9 ICFT e 4 . . . 4 . . . . . . . . . . .
9 MAFT . . 8 . . . . . . . . . . . . .
3 a3 . . . . . . 1 . . . . . . . . .
3 ICFT c 7 . . . . . 1 . . . . . . . . .
3 ICFT e 6 . . . 2 . . . . . . . . . . .
3 MAFT 4 . 4 . . . . . . . . . . . . .
1 a3 . . . . 1 . . . . . . . . . . .
1 ICFT c 7 . . . 1 . . . . . . . . . . .
1 ICFT e 7 . . . 1 . . . . . . . . . . .
1 MAFT 6 . 2 . . . . . . . . . . . . .
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Table 8: Metrics for non-isomorphic 36 run 33 designs, Part I (denominators 2a3b, a, b ∈ N0).

rank metric 0 1/48 1/24 1/16 1/12 1/8 1/6 1/4 7/24 1/3 3/8 5/12 2/3
16 a3 . . . . . . . . . . . . 1
16 ICFT c 6 . . . . . . . . 2 . . .
16 ICFT e . . . . 8 . . . . . . . .
16 MAFT . . . . 8 . . . . . . . .
6 a3 . . . . . . . . . . . 1 .
6 ICFT c 4 . 2 . . . 2 . . . . . .
6 ICFT e . 4 . . 4 . . . . . . . .
6 MAFT . 4 . . 4 . . . . . . . .
5 a3 . . . . . . . . . . 1 . .
5 ICFT c 6 . . . . 1 . 1 . . . . .
5 ICFT e 2 . 3 . 3 . . . . . . . .
5 MAFT 2 . . 6 . . . . . . . . .
4 a3 . . . . . . . . 1 . . . .
4 ICFT c 4 . . 2 2 . . . . . . . .
4 ICFT e . 6 . . 2 . . . . . . . .
4 MAFT . 6 . . 2 . . . . . . . .
2 a3 . . . . . . 1 . . . . . .
2 ICFT c 6 . . . 2 . . . . . . . .
2 ICFT e . 8 . . . . . . . . . . .
2 MAFT . 8 . . . . . . . . . . .

Table 9: Metrics for non-isomorphic 36 run 33 designs, Part III.

rank metric 0 1/48 0.023 1/24 0.046 1/16 1/12 7/48 0.269 5/12 0.537 13/24 2/3
16 a3 . . . . . . . . . . . . 1
16 ICFT c 4 . . 2 1 . . . . . 1 . .
16 ICFT e . 4 2 . . . . . 2 . . . .
16 MAFT . 4 . . . . . 4 . . . . .
14 a3 . . . . . . . . . . . 1 .
14 ICFT c 2 . 1 2 . . 2 . 1 . . . .
14 ICFT e . 4 1 . . . 2 . 1 . . . .
14 MAFT . 4 . . . . 2 2 . . . . .
6 a3 . . . . . . . . . 1 . . .
6 ICFT c 4 . 1 . . 2 . . 1 . . . .
6 ICFT e . 6 1 . . . . . 1 . . . .
6 MAFT . 6 . . . . . 2 . . . . .
6 a3 . . . . . . . . . 1 . . .
6 ICFT c 4 . 1 . . 2 . . 1 . . . .
6 ICFT e . 6 1 . . . . . 1 . . . .
6 MAFT . 6 . . . . . 2 . . . . .
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Table 10: Metrics for non-isomorphic 36 run 33 designs, Part IV.

rank metric 0 1/48 0.023 1/16 0.091 13/48 19/48 23/51 2/3 0.768 11/12
21 a3 . . . . . . . . . . 1
21 ICFT c 4 . 1 2 . . . . . 1 .
21 ICFT e . 6 1 . . . . . . 1 .
21 MAFT . 6 . . . . 2 . . . .
16 a3 . . . . . . . . 1 . .
16 ICFT c 4 . . 2 1 . . 1 . . .
16 ICFT e . 6 . . 1 . . 1 . . .
16 MAFT . 6 . . . 2 . . . . .

and distinguishes this triple from the two singletons 2 and 3. ICFT e is able to distinguish three singletons
from the two indistinguishable designs, i.e. has the best discrimatory power among the three approaches. As
a matter of interest, note that the SCFT introduced by Grömping (in press) based on Grömping and Xu
(2014) cannot distinguish designs 2 and 4 but can distinguish these two from three singletons; thus, with any
of the ICFT s or MAFT s in combination with SCFT s, non-isomorphism of all five designs can be established.
SCFTs can also distinguish the two designs with a3 = 5/12 from Table 9.

7. Discussion

This paper has introduced interaction contributions and the related ICFT s for a new coding invariant single
degree of freedom decomposition of generalized word counts Aj according to Xu and Wu (2001). ICFT s can
be used for ascertaining absence of combinatorial equivalence. Two auxiliary results are of interest in their
own right: under normalized orthogonal coding, the outer cross product matrices XI(S)X>I(S) are coding
invariant, and the vector βI(S) of model coefficients can be expressed in a coding invariant way in terms of
the vector c of linear combination coefficients for the right singular vectors of the matrix XI(S).

ICFTs decompose aj(S) from a j factor set S into df(S) contributions (with df(S) the degrees of freedom
for the j factor interaction I(S) in a full factorial design); for symmetric designs, the MAFT s by Fontana et
al. are another method of decomposing aj(S) into df(S) contributions. However, while ICFTs are coding
invariant, regardless of the situation, MAFTs are coding invariant for designs with factors at two or three
levels only. Where applicable and coding invariant, MAFTs and ICFTs have the potential to distinguish
non-isomorphic designs, for which projected aj values are the same. ICFTs, while being applicable and
coding invariant in far more situations than MAFT s, have far worse computing times than MAFT s, at least
in the author’s implementation. It is thus worthwhile to investigate how MAFTs are related to ICFTs,
hoping that this leads to an easily calculable coding invariant metric for (not necessarily symmetric) designs
with factors at more than three levels.

As was already mentioned, the SCFT s introduced by Grömping (in press) based on Grömping and Xu (2014)
also support distinguishing combinatorially non-equivalent j-factor designs with identical aj values: they
decompose projected aR values (R the resolution) based on the relation of main effects to R − 1 factor
interactions and are interpretable in terms of bias risks for main effect estimates. Besides for non-isomorphism
detection, they are therefore also interesting for the assessment of design quality, since main effect estimation
is often of interest; ICFT s and MAFT s are not so interesting as quality criteria, since the estimation of the
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overall mean is usually not among the main purposes of experimental design. In terms of distinguishing
non-isomorphic R-factor designs with identical aR values, SCFT s have good discriminatory abilities in some
classes of designs, as was already discussed in Grömping (in press) and in the example section, where it
was also observed that SCFT s complemented ICFT s or MAFT s regarding the distinction of non-equivalent
36 run designs for three 3-level factors. There are, however, also cases for which neither ICFTs nor SCFTs
are able to distinguish non-isomorphic designs, for example the 12 non-isomorphic GMA 36 run designs with
three 6-level factors given on the website by Eendebak and Schoen (2010) (generated by the method described
in Schoen et al. 2010), for which all designs have the same ICFT and SCFT (and MAFT is not meaningful
because of the coding dependence for factors with more than three levels).

Grömping (in press) discussed that SCFTs have only little discriminatory power for sets of regular designs,
since these have 0/1 squared canonical correlations only. It seems that this weakness is partly shared by
ICFT s: the 12 indistinguishable GMA 36 run designs are all regular under all three definitions introduced by
Grömping and Bailey (2016) (geometric regularity, CC regularity and R2 regularity); the latter two of these
definitions refer to SCFTs and Average R2 frequency tables (ARFTs, see Grömping in press), respectively.
So far, a compelling general relation of ICs to design regularity has not been established; however, it is
conceivable that CC regular designs (which have 0/1 SCFT entries only) always have only integers among the
concentrated ICs (e.g. the regular design of Table 4), and it is conjectured that R2 regular designs (i.e. those
which have 0/1 ARFT entries only) have integer entries only in both ICFT c and ICFT e (as is e.g. the case
for the twelve GMA 36 run designs in three 6-level factors, for the two 5-level Latin squares studied by
Fontana, Rapallo and Rogantin (2016), and also for the only regular GMA 32 run design in three 4-level
factors). This is another topic for further investigation.

For the cases for which MAFTs are uniquely defined, the even ICFTs seem to be closer to the MAFTs
than the concentrated ICFT s (in case the two are different); the examples have shown that MAFT s tend to
subdivide the aR values as fine or finer than ICFT s; Example 5 has created the suspicion that the averaging
over level orderings undertaken for the calculation of MAFTs might mask some imbalance in designs; this
observation should be explored further. Ideally, a better understanding of the relation between ICFTs and
MAFTs may contribute to developing a coding invariant tabulation that makes use of insights behind the
calculation of MAFT s for fast calculation but also respects the entire imbalance available in a design and is
truly coding invariant for factors with more than three levels. Such a metric could become a very useful tool
in checking combinatorial equivalence of factorial designs.
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