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Structural forms and consistent initial values for DAEs
from applications

Diana Estévez Schwarz

Abstract

One of the difficulties associated with the numerical integration of DAEs is the
computation of consistent initial values. A consistent initial value has to fulfill the
explicit constraints as well as the hidden constraints that may result from differen-
tiation.

If certain structural assumptions are given, then a consistent initialization can
be determined sequentially starting from a value that fulfills the explicit constraints.
In a second step, a correction of this value is computed successively solving linear
subproblems that involve the hidden constraints.

In this report, we summarize some of the existing results for this approach and
focus on specific generalizations for DAE forms that are given in applications. On
the one hand, the structure of DAEs resulting from water tube systems is discussed
and analyzed with regard to consistent initialization. On the other hand, we discuss
DAEs in triangular chain form with Hessenberg subsystems as well as Hessenberg
DAEs that are coupled to index-1 constraints.

1 Introduction
“It is a basic tenet of numerical analysis that structure

should be exploited whenever solving a problem”.
G. H. Golub and C. F. van Loan in [7].

DAE structures that are given in applications should be exploited computing a con-
sistent initialization. In order to describe these beneficial structures, we will shortly give
an overview of the basic theoretical framework.

In this paper, we consider quasi-linear DAEs of the form

Ax′(t) + b(x(t), t) = 0 (1)

for a constant nonregular matrix A and defineQ as a projector ontoN := kerA, P := I−Q
and W0 as a projector along im A.

According to ODE theory, we define for DAEs:

Definition 1.1 A vector x0 ∈ IRm is a consistent initial value of (1), if there exists a
solution of (1) that fulfills x(t0) = x0.
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In practice, we are also interested in the corresponding values of the derivatives appearing
in the DAE. The following definition will characterize these values properly.

Definition 1.2 A vector (x0, Py0) is a consistent initialization of (1) if x0 is a consistent
initial value and (x0, Py0) fulfills the equation

APy0 + b(x0, t0) = Ay0 + b(x0, t0) = 0.

In order to simplify the notation for examples involving several variables, in the following
we will use Px′0 to denote Py0.

Taking into account that (1) involves some algebraic equations, a consistent initial
value has to fulfill precisely these algebraic equations. If higher index problems are consid-
ered, the differentiation of these algebraic equations leads to further algebraic equations,
called hidden constraints, which a consistent initial value has to fulfill, too.

Notice now that all solutions of (1) lie in

M0(t) := {x ∈ D : W0b(x, t) = 0}.

In the index-1 case, the set of consistent initial values is given by M0(t).

For the index-2 case, the consistent initial values have to lie in a subset denoted

M1(t) ⊂M0(t),

which is defined by the so-called hidden constraints and M0(t). For higher index cases,
corresponding subsets have to be considered.

2 Consistent initialization for index-2 DAEs

With regard to Sections 3 and 4 we briefly summarize some results from [3]. Note that
we considerably simplified some of the assumptions taking advantage of the structural
properties of the equations that will be considered in this paper.

In the following, we assume that (1) is index-2 tractable and that sufficient smoothness
is given. Moreover, for

S(x, t) := {z ∈ IRm : W0b
′
x(x, t)z = 0}.

we assume that

N ∩ S(x, t) is constant,

define T as a projector onto N ∩ S(x, t), suppose that TQ = QT = T holds, and define
U := I − T .

Note that N ∩S(x, t) describes the so-called index-2 components. Hence, Tx is deter-
mined neither by a differential equation nor by a derivative-free equation, but by inherent
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differentiation.

Let us further assume that
im (A+ b′x(x, t)Q)

is constant and define W1 as a projector along im (A+ b′x(x, t)Q) with W1W0 = W1.

Let us finally suppose that (1) has the following structure that restricts the nonlinearity

Ax′(t) + b̃(Ux(t), t) + B(Ux(t), t)Tx(t) = 0 (2)

for a matrix B(Ux(t), t), i.e., we suppose, that the N ∩S-component occurs only linearly.

For this specific structure it results that the hidden constraints arise only from the
differentiated W1–part of the equations, i.e., from

(W1b̃)
′
x(Ux, t)Px

′ + (W1b̃)
′
t(Ux, t) = 0. (3)

Correspondingly, the set of consistent initial values for a DAE system of the form (2) is
given by

M1(t) :=

{
z : ∃y A(Uz, t)y + b̃(Uz, t) + B(Uz, t)Tz = 0,

(W1b̃)
′
x(Uz, t)y + (W1b̃)

′
t(Uz, t) = 0

}
.

As a consequence, consistent initial values can be computed as follows:

Theorem 2.1 [3] Suppose that some values (x0, Py0) fulfilling

Ay0 + b̃(Ux0, t0) + B(Ux0, t)Tx0 = 0

are given. We obtain a consistent initialization (x0, Py0) starting up from (x0, Py0) setting
Ux0 := Ux0, computing the unique solution (x̂0, P ŷ0) of the linear system

Aŷ0 + B(Ux0, t)T x̂0 = 0,

Ux̂0 = 0,

(W1b̃)
′
x(Ux0, t0)P [y0 + ŷ0]

+(W1b̃)
′
t(Ux0, t0) = 0,

and setting

x0 = x0 + x̂0,

Py0 = Py0 + P ŷ0.

Note that the above structural assumptions are more restrictive than in [3], where:

• on the one hand, A(Ux, t) was allowed. This assumption was required for the
conventional MNA equations.
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• on the other hand, W1(Ux, t) was allowed. This assumption was required for the
charge-oriented MNA equations. Thus, in the equation corresponding to (3) the
projector W1 is not differentiated in [3].

However, for the applications considered below the simplified assumptions are sufficient.
Moreover, we will see that the equations from Section 3 present the special structure

Ax′(t) + b̃(Ux(t), t) + BTx(t) = 0, (4)

for a constant matrix B. This special structure was also carefully analyzed in [3] with
regard to numerical consequences for the implicit Euler method and the trapezoidal rule.

3 Water tube system

In this section we focus on DAEs resulting for the water tube system problem presented
in [9]. Firstly, we formulate the equations in general terms and give, secondly, some nu-
merical results for the specific example of [9].

Note that a water tube system is represented by a set of nnodes nodes, wich are con-
nected by ntubes tubes. Hence, we can consider it as a oriented graph of nodes and branches
and describe it by the incidence Matrix A ∈ IRnnodes×ntubes :

aik :=


+1 if branch k leaves node i,
−1 if branch k enters node i,
0 if branch k is not incident with node i.

This incidence matrix describes the branch-node relations of the network graph. Note
that in [9] the node-node incidence matrix is used instead.

In the model, every node can have inflow and outflow. We describe them by ein(t) ∈
IRnnodes and eout(t) ∈ IRnnodes .

There are two kinds of nodes: buffer nodes (b-nodes), to which a buffer is attached,
and normal nodes (n-nodes). Hence, we suppose

nnodes = nb + nn.

Let us assume that the nodes are ordered in such a way that we may split the incidence
matrix as follows

A =

(
Ab
An

)
, Ab ∈ IRnb×ntubes , An ∈ IRnn×ntubes

i.e., b-nodes are described first and n-nodes subsequently.

To model the flow of the water, several quantities are considered, whereas some of
them can be computed directly from others. Let pb ∈ IRnb and pn ∈ IRnn be vectors
describing the pressure in the buffer and the normal nodes, respectively. According to [9],
to model the flow through the tubes, φ ∈ IRntubes , equations of the form

V φ′ = ATb pb + ATnpn + g1(λ, φ, t)
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are considered, whereas V is a diagonal matrix, g1 is a nonlinear function, and the coef-
ficients of resistance of the tubes, λ ∈ IRntubes , are related to φ by nonlinear equations of
the form

g2(λ, φ, t) = 0.

Let us analogously suppose that correspondingly ordered vectors

ein(t) =

(
einb
einn

)
eout(t) =

(
eoutb

eoutn

)
are given. Applying Kirchhoff’s Law to each node we obtain:

Abφ+ einb (t) + eoutb (t) = Cp′b,

Anφ+ einn (t) + eoutn (t) = 0,

whereas C is a diagonal Matrix.
Summarizing, the equations present the following structure

V φ′ = ATb pb + ATnpn + g1(λ, φ, t), (5)

0 = g2(λ, φ, t), (6)

Cp′b = Abφ+ einb (t) + eoutb (t), (7)

0 = Anφ+ einn (t) + eoutn (t). (8)

Assuming that V and C are constant regular matrices, ∂g2
∂λ

is nonsingular, and An
has full row rank, it follows that all assumptions from Section 2 are fulfilled. For x =
(φ, λ, pb, pn) the corresponding projectors read:

W0 =


0

Intubes
0

Inn

 , W1 =


0

0
0

Inn

 ,

Q =


0

Intubes
0

Inn

 , T =


0

0
0

Inn

 ,

whereas Intubes and Inn denote the identity matrices of the dimension ntubes and nn (for
normal nodes), respectively.

In fact, straightforward computation leads to the hidden contraints

0 = AnV
−1 (ATb pb + ATnpn + g1(λ, φ, t)

)
+ ein

′

n (t) + eout
′

n (t).

With regard to the computation of a consistent initialization let us suppose that values

(φ0, λ0)

that fulfill

0 = g2(λ
0, φ0, t0),

0 = Anφ
0 + einn (t0) + eoutn (t0),
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and some arbitrary values

(p0b , p
0
n)

are given and define

φ
′0 = V −1

(
ATb p

0
b + ATnp

0
n + g1(λ

0, φ0, t0)
)
,

p
′0
b = C−1

(
Abφ

0 + einb (t0) + eoutb (t0)
)
.

Then, accordingly to Theorem 2.1, a consistent initalization can be determined as
follows:

• First of all, set

φ0 := φ0,

λ0 := λ0,

pb0 := p0b .

• Secondly, determine (p̂n0 , φ̂
′
0) solving

V φ̂′0 = ATn p̂n0 ,

0 = An

(
φ
′0 + φ̂′0

)
+ ein

′

n (t0) + eout
′

n (t0).

Since An has full row rank, the solution of this system is uniquely defined.

• Finally, set

pn0 := p0n + p̂n0 ,

φ′0 := φ
′0 + φ̂′0,

pb
′
0 := p

′0
b .

Finally, let us point out that, since pn (the index-2 component) appears only linearly
with constant coefficients, the structural properties corresponding to (4) are given for

B =


0 0 0 ATn
0 0 0 0
0 0 0 0
0 0 0 0

 . (9)

Let us now focus on the example of [9]. The Matrix A reads



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 −1 1 −1 0 0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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Due to the fact that all diagonal elements of V are supposed to be equal to v, for φ
′0 = 0

it results (considering the quadratic norm):

p̂10 = − v

275

(
521 · ein′1 (t0) + 4 · ein′13 (t0)

)
,

p̂20 = − v

275

(
246 · ein′1 (t0) + 4 · ein′13 (t0)

)
,

p̂30 = − v

275

(
94 · ein′1 (t0) + 6 · ein′13 (t0)

)
,

p̂40 = − v

275

(
36 · ein′1 (t0) + 14 · ein′13 (t0)

)
,

p̂60 = − v

275

(
123 · ein′1 (t0) + 2 · ein′13 (t0)

)
,

p̂70 = − v

275

(
14 · ein′1 (t0) + 36 · ein′13 (t0)

)
,

p̂90 = − v

275

(
2 · ein′1 (t0) + 123 · ein′13 (t0)

)
,

p̂100 = −v
2
eout

′

10 (t0),

p̂110 = − v

275

(
4 · ein′1 (t0) + 246 · ein′13 (t0)

)
,

p̂120 = − v

275

(
6 · ein′1 (t0) + 94 · ein′13 (t0)

)
,

p̂130 = − v

275

(
4 · ein′1 (t0) + 521 · ein′13 (t0)

)
.

Observe how the symmetry of the result reflects the symmetry of the network repre-
sented in [9].

Since in the example all values of the derivatives of the input and output functions
are zero, p̂n0 is also zero and the given value from [9] is trivially consistent.

On that account, let us consider for x0 the numerical solution for t0 = 0.612E + 05
using PSIDE as described in [9]. Suppose that for (φ0, λ0, p0b) precisely these values are
given and, in order to test our initialization approach, assume p0n = 0. Note that the
corresponding value of φ

′0 is not zero. The consistent value for pn results to be

pn0 = p̂n0 = 1.0e+ 005 ·



1.11127172445388
1.11127016244451
1.11126938591833
1.11126940383237
1.11126937696131
1.11127023410067
1.11127450541665
1.11125515888109
1.11127896524092
1.11127125287727
1.11129851077039


.

These values do not coincide exactly with the values obtained by PSIDE for t0 = 0.612E+
05. In fact, if also for p0n the values from the numerical solution are chosen, then for
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consistency we still obtain a correction:

p̂n0 =



0.06457236291058
0.03105146480413
0.01305629910703
0.00811743250241
0.01552573239479
0.01129599829834
0.00859008476985
0.00000000001433
0.01718016952515
0.02577056230529
0.01717986154569


.

Hence, the latter values precisely give us information about the ’inconsistency’ of the
numerical solution.

Note finally that due to (9), the results from [3] imply for the implicit Euler method
and the trapezoidal rule that an error in pn is not transferred to other components. In fact,
the Euler method gives the same results starting with x0 and x0 and for the trapezoidal
rule it holds that the results differ only in pn.

4 DAEs in Hessenberg form with restricted nonlin-

earity

For index-2 DAEs in Hessenberg form the restricted nonlinearity described by (2) implies
that the equations present the form

x′1(t) = b̃1(x1(t), t) + B1(x1(t), t)x2(t), (10)

0 = b̃2(x1(t), t). (11)

Note that all structural assumptions from Section 2 are given and that it holds

T = Q =

(
0 0
0 I

)
, W1 = W0 =

(
0 0
0 I

)
.

In this case, Theorem 2.1 implies that, if values x1
0 fulfilling (11) are given, for com-

puting a consistent initialization we set x10 = x01 and then solve the linear system that
reads:

y10 = b̃1(x10, t) + B1(x10, t0)x20,
0 = [b̃2]

′
x(x10, t0)y10 + [b̃2]

′
t(x10, t0),

where (y10, x20) are the unknowns.
As an example, the equations used for the simulation of the dynamics of multibody

systems in the index-2 formulation from [8] precisely present this structure.
Let us now focus on the generalization of this initialization approach.
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Definition 4.1 [5] Consider nonlinear Hessenberg DAEs of order r, r ≥ 2, presenting
the structure:

x′1 = B1,r(x1, x2, ..., xr−1, t)xr + g1(x1, x2, ..., xr−1, t), (12)

x′i = Bi,i−1(xi, xi+1, . . . , xr−1, t)xi−1 + gi(xi, ..., xr−1, t), (13)

0 = fr(xr−1, t), (14)

x1 ∈ IRm1, xr ∈ IRmr , xi ∈ IRmi, m = m1 + ...+mr , gi ∈ IRmi,
B1,r ∈ IRm1×mr , Bi,i−1 ∈ IRmi×mi−1, i = 2, ..., r − 1, and

∂fr
∂xr−1

· ∂fr−1
∂xr−2

· · · ∂f2
∂x1
· ∂f1
∂xr

=
∂fr
∂xr−1

·Br−1,r−2 · · ·B2,1 ·B1,r

is nonsingular. We denote this class of nonlinear systems DAEs in “Hessenberg form with
restricted nonlinearity”.

Recall that for DAEs in Hessenberg form the order coincides with the index and that,
consequently, the computation of a consistent initialization involves r− 1 differentiations.

Definition 4.2 [5] To shorten denotations, we introduce successively the following abbre-
viations:

Ωr−1 :=

(
∂fr
∂xr−1

)
Ωr−i := Ωr−i+1Br−i+1,r−i for i = 2, . . . , r − 1.

Note that this definition implies:

Ωr−1 := Ωr−1(xr−1, t),

Ωr−i := Ωr−i(xr−i+1, . . . , xr−1, t) for i = 2, . . . , r − 1.

Define further

Rr−1(xr−1, t) :=
∂fr
∂t

(·),

Rr−i(xr−i, . . . , xr−1, t) :=
∂
(
Ωr−i(·)xr−i + Ωr−i+1(·)gr−i+1(·) +Rr−i+1(·)

)
∂t

+
r∑

j=r−i+1

(
∂
(
Ωr−i(·)xr−i + Ωr−i+1(·)gr−i+1(·) +Rr−i+1(·)

)
∂xj

·[Bj,j−1(·)xj−1 + gj(·)]
)

for i = 2, . . . , r − 1 successively.

Theorem 4.3 [5] Consider DAEs in Hessenberg form with restricted nonlinearity of or-
der r. Suppose that a value x0r−1, that fulfills the equation

0 = fr(x
0
r−1, t0),

and some arbitrary values (x01, . . . , x
0
r−2) are given.

Then, we may calculate a consistent initial value (x10, . . . , xr0) as follows:
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• Set xr−10 := xr−1
0.

• Consider j = r−2, . . . , 1 successively. In each step, xj+10, . . . , xr−10 are supposed to
be fixed from previous steps and we proceed to compute xj0 considering the correction

x̂j0 := xj0 − xj
0.

This correction x̂j0 with ‖x̂j0‖ = min is computed by solving the possibly under-
determined linear system

Ωjx̂j0 = −Ωjxj
0 − Ωj+1(·)gj+1(·)−Rj+1(·),

whereas for all the values that appear in the expressions Ωj(·), gj+1(·), and Rj+1(·)
we substituted the values (xj+10, . . . , xr−10) calculated in the corresponding previous
steps. Once the correction is determined, we simply set

xj0 = xj
0 + x̂j0 .

Consequently, we obtain a value xj0 that fulfills the hidden constraint and∥∥xj0 − x0j∥∥ = min .

• Finally, xr0 is determined as the solution of the linear system

Ω1(·)B1,r(·)xr0 = −Ω1(·)g1(·)−R1(·).

After calculating these values, the corresponding initial values for the derivatives,
x′10, . . . , x

′
r−10, may be calculated directly from the equations (12)-(14).

In [5], the approach is illustrated for several examples of [9] in Hessenberg form. For
the common index-3 formulation of the equations used for the simulation of the dynam-
ics of multibody systems, the above stated assumptions are given and the initialization
procedure coincides, in fact, with the proposal presented in [10].

5 DAEs in Hessenberg triangular chain form

With regard to yet another generalization, in the following we say that a DAE is in a
(lower) Hessenberg triangular chain form of order k and with restricted nonlinearity, if it
can be written as

H1(x
′
1, x1, t) = 0

H2(x
′
2, x1, x2, t) = 0

...

Hk(x
′
k, x1, . . . , xk, t) = 0
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and the system defined by the funcion Hj is in Hessenberg form in the variable xj with
restricted nonlinearity, i.e., for xj = (xj1 , . . . , xjrj ) it is of the Hessenberg form of order
rj, rj ≥ 2:

x′j1 = Bj
1,jrj

(x1, . . . , xj−1, xj1 , xj2 , ..., xjrj−1 , t)xjrj

+gjj1(x1, . . . , xj−1, xj1 , xj2 , ..., xjrj−1 , t),

x′ji = Bj
ji,ji−1(x1, . . . , xj−1, xji , xji+1

, . . . , xjrj−1 , t)xji−1

+gjji(x1, . . . , xj−1, xji , ..., xjrj−1 , t),

0 = f jrj(x1, . . . , xj−1, xjrj−1 , t),

xj1 ∈ IRmj1 , xjrj ∈ IR
mjrj , xji ∈ IRmji , mj = mj1 + ...+mjrj

, gjji ∈ IR
mji ,

Bj
1,rj
∈ IRmj1×mjrj , Bj

ji,ji−1
∈ IRmji×mji−1 , ji = j2, ..., jrj−1, and

∂f jrj
∂xjrj−1

·Bj
jrj−1,jrj−2

· · ·Bj
j2,j1
·Bj

j1,jrj

is nonsingular.
A consistent initialization for systems that present the above defined structure can be

undertaken as follows:

• Determine a consistent initial value x10 as stated in Theorem 4.3 and compute all
corresponding values for x1

′
0. Note that in order to determine xr1

′
0 the expression

Ω1
1(x12 , . . . , x1r1−1)B

1
1,r1

(x11 , . . . , x1r1−1 , t)x1r1 =

−Ω1
1(x12 , . . . , x1r1−1 , t)g

1
1(x11 , . . . , x1r1−1 , t)−R1

1(x12 , . . . , x1r1−1 , t)

has to be differentiated and all values have to be substituted. However, this differ-
entiation for the computation of xr1

′
0 is only necessary, if xr1 appears in subsequent

blocks.

• Determine successive consistent values xj0 (j = 2, . . . , k successively) as follows:

– Determine a value x0jrj−1
that fulfills the equation

0 = f jrj(x10, . . . , xj−10, x
0
jrj−1

, t0)

and some arbitrary values (x0j1 , . . . , x
0
jrj−2

). Set xjrj−10
= x0jrj−1

.

– Consider i = rj − 2, . . . , 1 successively. In each step,

x10, . . . , xj−10, xji+10
, . . . , xjrj−10

are fixed and we proceed to compute xji0 considering the correction

x̂ji0 := xji0 − xji
0.

This correction x̂ji0 with
∥∥x̂ji0∥∥ = min is computed by solving a possibly under-

determined linear system analogously as described in Theorem 4.3 .
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– Compute all corresponding values for xj
′
0 analogously as we did for x1

′
0. Again,

the additional differentiation is only necessary, if the xjrj -component of a block
Hj appears in subsequent Hessenberg blocks.

Note that for this generalization there are two main aspects that have to be taken into
account:

• The nonlinear equations

0 = f jrj(x10, . . . , xj−10, x
0
jrj−1

, t0)

have to be solved for each block Hj. Hence, a consistent initialization cannot be
computed solving only linear subproblems unless these equations are linear.

• In each step, we may need to compute not only Pxj
′
0, but xj

′
0, if the xjrj -component

of a block Hj appears in subsequent Hessenberg blocks.

We illustrate this straight-forward generalization and the specified aspects by means of a
well-known example.

Consider the DAEs resulting from the exothermic reactor model (cf. [11]):

C ′ = K1(Cf (t)− C)−R, (15)

0 = C − u(t), (16)

T ′ = K1(Tf (t)− T ) +K2R−K3(T − TC), (17)

0 = R−K3e
−K4
T C, (18)

whereas K1, K2 K3 K4 are constants, Cf and Tf are the feed reactant concentration
and feed temperature (assumed to be known functions). The variables C and T are the
corresponding quantities in the product, u(t) is an input function prescibing C, R is the
reaction rate per unit volume, and TC is the temperature of the cooling medium (which
can be varied).

Note that (15)-(16) presents a Hessenberg triangular chain form of order 2. For the
above notation this would imply that for x1 = (C,R), (15)-(16) correspond to

H1(x
′
1, x1, t) = 0.

Since the order of H1 is 2, consistent initial values C0 and R0 result as follows:
Set

C0 := u(t0)

and afterwards

R0 := K1(Cf (t0)− C0)− u′(t0).

14



Set then
C ′0 = u′(t0)

and
R′0 := K1(C

′
f (t0)− u′(t0))− u′′(t0).

Note that the last value has to be determined because R appears in equation (18).
Moreover, for x2 = (T, TC), (17)-(18) is in Hessenberg form in the variable x2. Hence,

(17)-(18) correspond to
H2(x

′
2, x1, x2, t) = 0.

The order from H2 is again 2. Consistent initial values result then as follows.

To obtain T0 solve the nonlinear equation

R0 = K3e
−K4
T0 C0.

Afterwards, determine TC0 by solving the linear equation

0 = K1(C
′
f (t0)− u′(t0))− u′′(t0)

−K3e
−K4
T0 C0

−K4

T 2
0

(K1(Tf (t0)− T0) +K2R0 −K3(T0 − TC0))

−K3e
−K4
T0 C ′0.

6 DAEs in Hessenberg form with coupled index-1

constraints

In this section we consider DAEs presenting Hessenberg form with restricted nonlinearity
coupled with index-1 conditions. DAEs of this type appear, for instance, in the modeling
of contact problems in multibody systems dynamics.

Definition 6.1 Consider nonlinear DAEs presenting the structure:

x′1 = B1,r(x1, x2, ..., xr−1, xr+1, t)xr + g1(x1, x2, ..., xr−1, xr+1, t), (19)

x′i = Bi,i−1(xi, xi+1, . . . , xr−1, xr+1, t)xi−1 + gi(xi, ..., xr−1, xr+1, t), (20)

0 = fr(xr−1, xr+1, t), (21)

0 = fr+1(xr−1, xr+1, t) (22)

r ≥ 2, x1 ∈ IRm1, xr ∈ IRmr , xr+1 ∈ IRmr+1, xi ∈ IRmi, m = m1 + ... + mr + mr+1 ,
gi ∈ IRmi, B1,r ∈ IRm1×mr , Bi,i−1 ∈ IRmi×mi−1, i = 2, ..., r − 1, whereas

∂fr
∂xr−1

·Br−1,r−2 · · ·B2,1 ·B1,r

is nonsingular and

∂fr+1

∂xr+1

is nonsingular.
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A consistent initialization for systems that present this structure can be undertaken
as follows. Suppose that values (x0r−1, x

0
r+1) fulfilling

0 = fr(x
0
r−1, x

0
r+1, t0),

0 = fr+1(x
0
r−1, x

0
r+1, t0)

and some arbitrary values (x01, . . . , x
0
r−2) are given.

Then, we may calculate a consistent initial value (x10, . . . , xr0) as follows:

• Set

xr−10 := xr−1
0,

xr+10 := xr+1
0.

• Determine x′r+10
and xr−20 solving the system

0 = [fr]
′
xr+1

(xr−10, xr+10, t0)x
′
r+10

+

[fr]
′
xr−1

(xr−10, xr+10, t0) (Br−1,r−2xr−20 + gr−1) +

[fr]
′
t(xr−10, xr+10, t0)

0 = [fr+1]
′
xr+1

(xr−10, xr+10, t0)x
′
r+10

+

[fr+1]
′
xr−1

(x0r−1, x
0
r+1, t0) (Br−1,r−2xr−20 + gr−1) +

[fr+1]
′
t(xr−10, xr+10, t0)∥∥xr−20 − x0r−2∥∥ = min

for

Br−1,r−2 = Br−1,r−2(xr−10, xr+10, t0),

gr−1 = gr−1(xr−10, xr+10, t0).

At this point, we assume that this system is solvable. Later on we will see that this
assumption is usual for the DAEs arising from contact problems.

• Determine successively xj0 for j = r− 3, . . . , 1 and xr0 analogously to Theorem 4.3,
considering additionally xr+10 and x′r+10

.

As an example presenting these structural properties let us consider the structure of
contact problems in multibody dynamics as stated in [2]. Denote

• p ∈ IRnp are position coordinates,

• pr ∈ IRncon are the coordinates of the contact points,

• v ∈ IRnp are velocities,

• λ ∈ IRnλ are Lagrange multipliers, with nλ ≤ np,
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• M(p) is the positive definite mass matrix,

• f(p, pr, v) are the applied outer forces,

• gcon(p, pr) are the contact conditions,

• gnpe(p, pr) are the non-penetrating conditions,

• G(p, pr) := ∂gcon
∂p

(p, pr) is the constraint matrix with full rank nλ.

Moreover, due to the specific relation between the contact and the non-penetrating con-
ditions

∂gcon
∂pr

(p, pr) = 0 (23)

holds (cf. [2]).
The formulation presented in [2] reads:

p′ = v,

M(p)v′ = f(p, pr, v)−G(p, pr)
Tλ,

0 = gcon(p, pr),

0 = gnpe(p, pr).

To recognize the structure introduced above, we prefer the following equivalent form:

v′ = M(p)−1f(p, pr, v)−M(p)−1G(p, pr)
Tλ,

p′ = v,

0 = gcon(p, pr),

0 = gnpe(p, pr).

We assume that the assumptions from Definition 6.1 are given and the index is 3.
According to the approach presented above we have r = 3, x1 = v, x2 = p, x3 = λ and
x4 = pr. A consistent initial value can be determined as follows:

• Determine values (p0, pr0) fulfilling

0 = gcon(p0, pr0)

0 = gnpe(p0, pr0)

and suppose that a value v0 is given.

• Determine (p′r0, v0) solving

0 = [gcon]′p(p0, pr0)v0 + [gcon]′pr(p0, pr0)p
′
r0

0 = [gnpe]
′
p(p0, pr0)v0 + [gnpe]

′
pr(p0, pr0)p

′
r0∥∥v0 − v0∥∥ = min .
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Due to (23) and [gcon]′p = G this system is solvable and can be reduced to

0 = G(p0, pr0)v0∥∥v0 − v0∥∥ = min

and
0 = [gnpe]

′
p(p0, pr0)v0 + [gnpe]

′
pr(p0, pr0)p

′
r0
.

• Determine λ0 solving the linear system

(G(p0, pr0)M(p0)
−1G(p0, pr0)

T )λ0 = G(p0, pr0)M(p0)
−1f(p0, pr0, v0) +

G̃(p0, pr0, p
′
r0, v0)v0.

for G̃(p, pr, p
′
r, v) := d

dt
G(p, pr).

Note that in applications often v0 = 0 is chosen. In this case it suffices to set v0 =
v0 = 0 and solve

(G(p0, pr0)M(p0)
−1G(p0, pr0)

T )λ0 = G(p0, pr0)M(p0)
−1f(p0, pr0, v0)

to determine λ0. The computation of p′r0 is not required in this case.

So far, the Lagrange multipliers were supposed to fulfill our assumptions on restricted
nonlinearity. However, for advanced models that consider friction forces that depend
on the constraint forces −G(p, pr)

Tλ, this property is not given since the resulting force
vector may depend nonlinearly on λ, leading to systems of the form

p′ = v,

M(p)v′ = f(p, pr, v, λ)−G(p, pr)
Tλ,

0 = gcon(p, pr),

0 = gnpe(p, pr).

With regard to the solvability of these systems, it is assumed that the generalized Grübler
condition

rank G(p, pr) = rank G(p, pr)M(p)−1
(
∂f

∂λ
(p, pr, v, λ)−G(p, pr)

T

)
= nλ

is given. For systems presenting this structure the initialization procedure can be applied
straight-forward. In this case, for the computation of λ0 a nonlinear system has to be
solved instead of a linear system.

Let us focus on even more general systems that have additional inner state variables
that we denote by β and time-dependent outer forces, leading to equations of the form

p′ = v, (24)

M(p)v′ = f(p, pr, v, λ, β, t)−G(p, pr)
Tλ, (25)

β′ = d(p, pr, v, λ, β, t), (26)

0 = gcon(p, pr), (27)

0 = gnpe(p, pr). (28)
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With regard to consistent initialization, the value of β0 can be chosen arbitrarily. p0,
pr0 and v0 are independent of the choice of β0 and can be determined analogously as in
the preceding case. However, the corresponding λ0 will depend, in general, on the choice
of β0. In fact, if v0 = v0 = 0 is chosen, λ0 results from

G(p0, pr0)M(p0)
−1 [f(p0, pr0, v0, λ0, β0, t0)−G(p0, pr0)

Tλ0)
]

= 0. (29)

Note finally that the wheelset problem from [9] and [2] in its index-3 formulation
presents the structure (24)-(28). The normal forces N , that depend on the Lagrange
multipliers λ1 and λ2, appear in the nonlinear expressions for the creep forces T1,2L|R , i.e.,
f depends nonlinearly on λ. Moreover, β presents the deviation of the angular velocity
and is given by an additional differential equation. In the index-2 formulation from [9],
the following equations are considered:

p′ = v, (30)

M(p)v′ = f(p, pr, v, λ, β, t)−G(p, pr)
Tλ, (31)

β′ = d(p, pr, v, λ, β, t), (32)

0 = G(p, pr)v, (33)

0 = gnpe(p, pr). (34)

Since λ, that is now the index-2 component, remains in a nonlinear expression, the struc-
ture (2) is not given either. Consequently, also in the index-2 formulation we have to solve
the nonlinear equations (29) in order to compute λ0 with our initialization approach. Note
that for the wheelset problem the dimension of (30)-(34) is 17 and the dimension of (29)
is just 2.

7 Conclusion

In this paper, we give an overview of structural classes of DAEs that allow the step-by-step
computation of consistent initial values. For these DAEs, a consistent initialization can
be determined sequentially starting from a value that fulfills the explicit constraints. In a
second step, a correction of this value is computed solving successively linear subproblems
that involve the hidden constraints.

For the DAEs resulting from circuit simulation, such an approach resulted to be es-
pecially suitable and allowed a better understanding of numerical features observed in
applications (see [3], [4], [6] and [1]). In the first part of this report it is shown how the
results from [3] can be applied to DAEs resulting from the simulation of a water tube
system.

For DAEs in Hessenberg form of arbitrary order, the approach is also feasible if cer-
tain assumptions regarding the nonlinearity are given (see [5]). The DAEs resulting from
multibody dynamics precisely fulfill these conditions and the method for the consistent
initialization coincides with well-understood approaches from multibody dynamics liter-
ature (see e.g. [10]).

In the second part of this report, the results from [5] are generalized for DAEs in Hes-
senberg triangular chain form. Afterwards, the results from [5] are also generalized for
DAEs in Hessenberg form with coupled index-1 constraints. We finally point out that the
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restricted nonlinearity is not given for some applications and discuss how the initialization
approach can be generalized if nonlinear subsystems of equations are solved.
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