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STRUCTURED SECOND-ORDER LINEAR ODES: EIGENVALUES,
SINGULAR VALUES AND THE DMD

DIANA ESTÉVEZ SCHWARZ

Abstract. For certain classes of structured matrices, the eigenvalues can be estimated
or even calculated explicitly by means of well-known formulas. Starting from these for-
mulas, in this article we derive further formulas for the eigenvalues and singular values of
structured matrices that result from second-order linear ODEs by order reduction. This
insight leads to a better understanding of these relationships and permits the construc-
tion of large-scaled examples (or counterexamples) with specific characteristics that can
be used for testing and teaching purposes. As applications, we discuss two well-known
example classes, namely a simple discretized wave equation and simple spring-damper
systems in series. On the one hand, we can recognize when complex eigenvalues appear
and compute the stiffness index and stiffness ratio explicitly. On the other hand, if the
dynamic mode decomposition (DMD) is applied to data generated with such ODEs,
then the formulas allow to estimate the eigenvalues and singular values that are rele-
vant in this context. For some of the mentioned examples we visualize and discuss the
approximations obtained with the DMD with very low-dimensional dynamics.

1. Introduction

The theory of linear differential equations is well established and the importance of the
eigenvalues well understood. Since many applications involve linear differential equations
that have strong structural properties, eigenvalues of many structured matrices have been
analyzed in detail and there exist very nice explicit formulas to compute them without
numerical methods. However, for the matrices we get when we reduce the order of second-
order ODEs, analogous formulas do not seem to be available yet, even if they are relatively
easy to derive. For these matrices, in general the eigenvalues are not singular values and
moreover, they may also be complex.

By deriving such formulas, we can better understand the properties of the solutions
of the ODEs, especially stiffness. Moreover, with that knowledge of the ODEs, we can
produce better understood data to test end verify data-driven methods for dynamical
systems.

The dynamic mode decomposition (DMD) is a method developed for applications in
fluid-dynamics to extract dynamic information from data and is based on a linear tangent
approximation [17]. The method can be applied also to data resulting from other areas.

For someone with knowledge of differential equations it may be a good approach to
understand how it works when applied to data generated as numerical solution of well-
understood ODEs.

In this article, we describe the relationship of the above mentioned formulas for the
eingenvalues of the ODEs and the eigenmodes of the DMD, especially with regard to the
spectral radius of the iteration matrix.

Date: August 12, 2024.
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The results may particularly be interesting for instructors, since high-dimensional ex-
amples with well understood properties can be constructed easily. Moreover, by using
results from the perturbation theory for eigenvalues [13], estimates for the order of mag-
nitude of the spectrum of more general examples may be possible.

The article is organized as follows. The structured second order ODES that we consider
are introduced in Section 2, where also the general formulas for eigenvalues and singular
values are derived for the reduced first order ODEs.

In Section 3, the general formulas are applied to the ODE that results for the wave
equation with the method of lines (MOL). Analogously, in Section 4, they are applied to
simple spring-damper systems.

In Section 5, we briefly explain the first step of the DMD, that we analyze in detail for
our purposes. Since our aim is to explore the relationship to numerically generated data,
in Section 6 we discuss the formulas of the Euler method for ODEs in this context.

The transfer to estimations for the DMD are finally discussed in Section 7 and in
Section 8 some illustrative numerical experiments are presented. A brief summary is
given in Section 9 and in the Appendix 10 the needed results from linear algebra have
been compiled.

2. Linear structured second order ODEs

We consider second order differential equations of the form

x′′ = αNx+ βNx′

for a constant matrix N ∈ Rn×n and factors α, β ∈ R. By order reduction, we obtain the
first order differential equation

y′ =

(
0 I
αN βN

)
y, for y =

(
x
x′

)
,

where I ∈ Rn×n stands for the identity matrix. In this section, we focus on the eigenvalues
and singular values of the matrix

M =

(
0 I
αN βN

)
in dependence of the eigenvalues and singular values of the matrix N .

For completeness and latter considerations we remark that if N is invertible, then M
is invertible as well and

M−1 =

(
−β
α
I 1

α
N−1

I 0

)
.

2.1. Eigenvalues. Considering the characteristic polynomial and using Theorem 10.1
from Appendix 10 as well as the Jordan normal form N = R−1JR we obtain

det(λI −M) = det

(
λI −I
−αN λI − βN

)
= det(λI(λI − βN)− αN)

= det(λ2I − λβN − αN)

= det(λ2R−1R− λβR−1JR)− αR−1JR)

= det(R−1) · det(λ2I − λβJ − αJ) · det(R)

= det(λ2I − λβJ − αJ).
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Therefore, if we assume that the eigenvalues of N are

λNk , k = 1, . . . , n,

then the eigenvalues for M are pairwise

λM2k−1 =
βλNk

2
+

√(
βλNk

2

)2

+ αλNk ,

λM2k =
βλNk

2
−

√(
βλNk

2

)2

+ αλNk .

Here we can perfectly appreciate the complex pairs of eigenvalues if the discriminant is
negative, i.e. if

αλNk < −
(
βλNk

2

)2

.

Note that for λNk > 0 this means

α < −β2λ
N
k

4
.

Moreover, if there exists a λNk such that

α = −β2λ
N
k

4
,

then M has a double eigenvalue λM2k−1 = λM2k.

Remark 2.1. Often the calculation of the real parts of the eigenvalues is important. Recall
that if some eigenvalues of M have large negative real parts, then explicit integration
schemes require very small step-sizes ht for stability reasons, such that implicit A-stable
integration schemes are much more appropriate. In these cases, the ODE y′ = My is
stiff. Therefore, the formulas allow the characterization of the stiffness.

2.2. Singular values. Let us suppose that

σNk , k = 1, . . . , n

are the singular values of N and N = UNΣNV
T
N the singular value decomposition of N

with ΣN = diag(σN1 , . . . , σ
N
n ), such that NNT = UNΣ2

NU
T
N , because the singular values of

N are the roots of the eigen values of NNT (and NTN).

The singular values of the matrix M are the roots of the eigenvalues of

MMT =

(
0 I
αN βN

)(
0 αNT

I βNT

)
=

(
I βNT

βN (α2 + β2)NNT

)
and

MTM =

(
0 αNT

I βNT

)(
0 I
αN βN

)
=

(
α2NTN αβNTN
αβNTN I + β2NTN

)
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that coincide. For our purposes, we consider the characteristic polynomial of MMT and
Theorem 10.1 from Appendix 10

det(λI −MMT ) = det

(
(λ− 1)I −βNT

−βN λI − (α2 + β2)NNT

)
= det((λ− 1)I

(
λI − (α2 + β2)NNT

)
− β2NNT )

= det(λ2I + λ
(
−(α2 + β2)NNT − I

)
+ α2NNT )

= det(U) det(λ2I + λ
(
−(α2 + β2)Σ2

N − I
)

+ α2Σ2
N) det(UT )

= det(λ2I + λ
(
−(α2 + β2)Σ2

N − I
)

+ α2Σ2
N).

Therefore, for

pk = −(α2 + β2)(σNk )2 − 1,

qk = α2(σNk )2,

we see that for the k-th quadratic equation the discriminant is

dk =

(
(α2 + β2)(σNk )2 + 1

2

)2

− α2(σNk )2 ≥ 0,

and the unsorted singular values σ̂M∗ of M can be calculated pairwise by(
σ̂M2k−1

)2
=

(α2 + β2)(σNk )2 + 1

2
+
√
dk,(

σ̂M2k
)2

=
(α2 + β2)(σNk )2 + 1

2
−
√
dk.

Since, by construction,

−pk
2

=
(α2 + β2)(σNk )2 + 1

2
≥

√(
(α2 + β2)(σNk )2 + 1

2

)2

− α2(σNk )2 =
√
dk,

we can confirm
(
σ̂Mk
)2 ≥ 0.

Observe that the order of the sorted singular values σMk depends on α and β. Note
further that, if N is symmetric and positive definite, the eigenvalues and singular values
of N coincide, but the eigenvalues and singular values of M are different.

3. Wave equations

Let us consider the wave equation

utt = c2∆u

with zero Dirichlet-Boundary conditions. To discretize with the method of lines (MOL)
here we approximate the second derivatives of the right hand side with central differences.
After reducing the order we obtain an ODE of the form

y′ =

(
0 I

− c2

h2x
N 0

)
y

i.e. α = − c2

hx
2 and β = 0, while the matrix N depends on the dimension.
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Note that these α, β imply

λM2k−1 =
c

hx

√
−λNk ,(3.1)

λM2k = − c

hx

√
−λNk ,(3.2)

for the eigenvalues and

dk =

(
(ασNk )2 − 1

2

)2

and

σ̂2k−1 =

√
(ασNk )2 + 1

2
+

(ασNk )2 − 1

2
= |α|σNk =

c2

hx
2σ

N
k

σ̂2k =

√
(ασNk )2 + 1

2
− (ασNk )2 − 1

2
= 1

for the singular values.

Figure 3.1. Eigenvalues of M for N = N (1) and different values of α and
β. The red dots correspond to the complex eigenvalues in the plane.

3.1. One-dimensional wave equation. In the one-dimensional case, N = N (1) from
the Appendix 10. Since N (1) is symmetric and positive definite, 0 < σNk = λNk < 4, such
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Figure 3.2. Singular values of M for N = N (1) and different values of α
and β. Since singular values are real, the dots represent the decreasingly
ordered values.

that

λM2k−1 = i
c

hx

√
2− 2 cos

(
kπ

n+ 1

)
,

λM2k = −i
c

hx

√
2− 2 cos

(
kπ

n+ 1

)
,

and therefore

Re(λMk ) = 0, −2
c

hx
< Im(λMk ) < 2

c

hx
as well as

σ̂M2k−1 =
c2

hx
2

(
2− 2 cos

(
kπ

n+ 1

))
,

σ̂M2k = 1

for k = 1, . . . , n and moreover

cond (M) =
σM1
σM2n

=
max

{
1, 2 c2

hx
2

(
1− cos( nπ

n+1
)
)}

min
{

1, 2 c2

hx
2

(
1− cos( 1π

n+1
)
)} .

Note that for 2 c2

hx
2

(
1− cos( π

n+1
)
)
< 1 < 2 c2

hx
2

(
1− cos( nπ

n+1
)
)

we obtain cond (M) =

cond (N).

8



3.2. Two-dimensional wave equation. In the two-dimensional case, N = N (4) from
the Appendix 10. Since N (4) is symmetric and positive definite, 0 < σNk = λNk < 8, such
that we obtain the unsorted values

λ̂Mj,2k−1 = i
c

hx

√
4− 2 cos

(
jπ

m+ 1

)
− 2 cos

(
kπ

m+ 1

)
,

λ̂Mj,2k = −i
c

hx

√
4− 2 cos

(
jπ

m+ 1

)
− 2 cos

(
kπ

m+ 1

)
,

Re(λ̂M∗ ) = 0, −2
c

hx
< Im(λ̂M∗ ) < 2

c

hx
as well as

σ̂Mj,2k−1 =
c2

hx
2

(
4− 2 cos

(
jπ

m+ 1

)
− 2 cos

(
kπ

m+ 1

))
σ̂Mj,2k = 1

for k = 1, . . . , n and therefore

cond (M) =
σM1
σM2n

=
max

{
1, 4 c2

hx
2

(
1− cos( nπ

n+1
)
)}

min
{

1, 4 c2

hx
2

(
1− cos( 1π

n+1
)
)} .

3.3. Conclusion for the wave equation. Note that for very small hx, the maximal
absolute values of eigenvalues and the maximal singular values become huge.

4. Mass-spring-damper system in series

Let us consider n rigid bodies of equal mass m in series sliding in only one direction
that are connected by equal linear spring-damper-systems with damping constant c and
spring constant k.

In terms of Section 2, this means

α = − k
m
, β = − c

m
,

and matrices N (1), N (2) or N (3), depending on the attachment of the first and last bodies
to rigid supports. Inserting the formulas from the Appendix 10 into the expressions of
Section 2, explicit formulas result straight forward.

In Figures 3.1 and 3.2 the resulting eigenvalues and singular values are visualized for
N = N (1) and different values of α and β.

4.1. Consequences for stiffness. Assuming that Re(λj) < 0 holds for all eigenvalues,
according to e.g. [14] the stiffness index is

L = max
j
|Reλj| ,

and the stiffness ratio

S =
maxj |Reλj|
minj |Reλj|

.

With the above formulas, L and S may be computed explicitly.
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Let us consider here N (2) and α < −β2, i.e. km > c2, such that all eigenvalues are
complex, and β = − c

m
< 0, such that all eigenvalues have negative real part. Then it

holds

L = β

(
1− cos

(
nπ

n+ 1

))
≤ 2β,

S =
maxj |Reλj|
minj |Reλj|

=
β
2

(
2− 2 cos

(
nπ
n+1

))
β
2

(
2− 2 cos

(
1π
n+1

)) =
1− cos

(
nπ
n+1

)
1− cos

(
1π
n+1

) .
Note that L increases with β, but S increases with n, independently of β.

5. First steps of the dynamic mode decomposition

The dynamic mode decomposition (DMD) is a numerical procedure for extracting dy-
namical features from data. Let us suppose that want to determine a the matrix M of an
linear ODE

y′ = My, M ∈ Rn×n, n ∈ N
from of a snapshot sequence

(5.1) Y = {y1, y2, . . . , ys}

where y(ti) ≈ yi ∈ Rn for equidistant ti+1 = ti + h, t0, h ∈ R, s ∈ N.
These snapshots are assumed to be related via a linear mapping described by a matrix

A that remains approximately the same over the duration of the sampling period, i.e.

yi+1 ≈ Ayi

for i = 1, . . . s− 1. This implies that for

Y1,s−1 = {y1, y2, . . . , ys−1} , Y2,s = {y2, y3 . . . , ys}

we have a residual matrix R with

Y2,s = AY1,s−1 +R,

such that R ∈ Rn×(s−1) accounts for behaviors that cannot be described completely by
the constant matrix A.

The output of the dynamic mode decomposition (DMD) is the eigenvalues and eigen-
vectors of the best-fit matrix A, which are referred to as the DMD eigenvalues and DMD
modes respectively.

According to [2], the best-fit matrix A can be defined as

As = min
A
‖Y2,s − AY1,s−1‖F = Y2,s (Y1,s−1)

+ ,

where ‖.‖F is the Frobenius norm and ()+ denotes the pseudo-inverse, such that such that

yi+1 ≈ Asyi.

The above approach corresponds to a forward DMD. Analogously, the backward DMD
can be obtained interchanging Y2, s and Y1,s−1, cf. [4]. Therefore, in terms of a backward
DMD we would compute a backward-time propagation matrix

Bs = min
B

∥∥BY s
2,s − Y1,s−1

∥∥
F

= Y1,s−1 (Y2,s)
+ ,

such that

yi ≈ Bsyi+1.
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Here, we will not go into the details of the efficient computation of the (leading) eigen-
values of As or Bs, in particular for n >> s. Instead, we focus on the relationship between
As, Bs and the matrix M .

6. Explicit and implicit Euler method

Solving the initial value problem

y′ = My, y(t0) = y0(6.1)

with the explicit Euler method with constant step-size ht we obtain discrete solutions

yi+1 = (I + htM) yi

such that for sufficiently small ht

A ≈ (I + htM) i.e. M ≈ 1

ht
(A− I)(6.2)

can be assumed.
With the A-stable implicit (or backward) Euler method the discrete solutions are com-

puted solving the linear systems

(I − htM) yi+1 = yi

in each step. Therefore, for small ht

(6.3) B ≈ (I − htM) i.e. M ≈ 1

ht
(I −B)

can be assumed.
Since stiff ODEs result in many applications, A-stable methods are often used, such

that for the computation of the numerical solution in each time-step a system of equations
has to be solved. Therefore, on the one hand the condition number of the corresponding
matrix (that can be computed with the singular values) is of interest. On the other hand,
if iterative solvers are used, then the eigenvalues are decisive for convergence. Indeed, the
eigenvalues of large families of matrices M related to first-oder ODEs are well understood,
motivated by their relevance for the solution of differential equations, s. Appendix 10.

For testing purposes, it seems likely to analyze well-understood ODEs y′ = My (6.1), to
generate a snapshot sequence (5.1) with an established integration scheme, to determine
then an approximation of M and to compare it to M itself.

As seen above, the spectrum of the matrix M can be approximated by the shifted and
scaled DMD eigenvalues if the samples yi have been generated numerically with Euler
methods and an appropriate s is large enough.

Therefore, for small ht and an appropriate s, we can assume that the DMD eigenvalues
can be approximated with the help of the formulas below. For completeness, we include
also the formulas for the singular values as well, since the largest singular value is crucial
for the condition concept defined in [7].

Remark 6.1. Note that for given A and B a better approximation of M may be achieved
considering

M ≈ 1

2ht
(A−B) ,

that reminds to the trapezoidal rule. However, with regard to the relationship between the
eigenvalues of M and the DMD, we focus on A and the approximation (6.2).
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7. Consequences for the DMD

Let us focus on the Euler method and suppose that ht is sufficiently small and the
estimations 6.2, 6.3 hold, i.e.

A ≈ (I + htM) and B ≈ (I − htM) .

If λ
(M)
k are the eigenvalues of M , then the eigenvalues λ

(I+hjM)
k of I + htM and λ

(I−hjM)
k

of I − htM result to be

λ
(I+htM)
k = 1 + htλ

(M)
k , λ

(I−htM)
k = 1− htλ(M)

k .

Since in our approximations and in general M is not a normal matrix, we cannot assume
that these eigenvalues are good approximations of the eigenvalues of A and B in general.
But if all eigenvalues are different, then M is diagonalizable and estimations are possible,
see also [3].

We will very briefly emphasize the following relationship between A and I +htM (that
coud be done analogously vor B and I − htB going backward in time):

• According to Theorem 10.4, yk+1 := Ayk converges to zero iff ρ(A) < 1.
• Analogously, yk+1 := (I + htM)yk converges to zero iff ρ(I + htM) < 1.

For stiff ODEs, this means that the explicit (forward) Euler method becomes unstable if
ht is not small enough. Nevertheless, we can at least produce decaying numerical solutions
choosing sufficiently small ht. For the DMD, the influence of the step size is not so clearly
visible, but may lead to the same instabilities.

Let us now focus on singular values. If σ
(M)
k are the singular values of M , accordingly

to Theorem 10.2 the singular values σ
(I+hjM)
k of I + htM and σ

(I−hjM)
k of I − htM can be

estimated by

σ
(I+htM)
k ≤ 1 + htσ

(M)
k , σ

(I−htM)
k ≤ 1 + htσ

(M)
k

and∣∣∣1 + htλ
(M)
1

∣∣∣ · · · |1 + λkM | =
∣∣∣λ(I+htM)

1

∣∣∣ · · · |1 + λkI + htM | ≤ σ
(I+htM)
1 · · ·σ(I+htM)

k ,∣∣∣1− htλ(M)
1

∣∣∣ · · · |1− λkM | = ∣∣∣λ(I−htM)
1

∣∣∣ · · · ∣∣∣1 + λ
(I−htM)
k

∣∣∣ ≤ σ
(I−htM)
1 · · ·σ(I−htM)

k ,

for k = 1, . . . , n− 1.
If we suppose that these approximations can be used to estimate the singular values

of A and B, this result becomes relevant if we want to approximate exact A and B by
lower-rank matrices Ak and Bk, see Theorem 10.3.

8. Numerical Tests

We discuss some tests for N = N (1) ∈ R20×20 and correspondingly M ∈ R40×40. For
the one-dimensional wave equation and 0 ≤ x ≤ 1 this means hx = 1

19
. For the numeri-

cal/iterative solutions we considered a time-step ht = 0.02/3.
In a first approach, we computed a sequence yn+1 = (I+htM)yn and applied the DMD

for small and large s. In this case, since the data were generated with a constant matrix
A = (I + htM), the results were as expected: larger s lead to better results in general.

Here, we focus on the results that we obtain when the numerical solutions of the ODE
where computed with ivp-solve using the BDF-method. In this case, no constant matrix is
given due to the time-step control, although the time-steps of the output are equidistant.
As a consequence, only for small s reasonable results are obtained. For larger s, the

12



computed approximations for eigenvalues and singular values are outside the expected
range, leading to completely different results.

We visualize the solutions, eigenvalues and singular values for a better understanding.
Observe that when the nonzero eigenvalues and/or singular values of As differ considerably
from the range of those from I + htM , the numerical solutions are quickly drifting apart.

8.1. Tests for N (1), a = −15, b = 0. In this case, the exact solution is periodic. For the
visualization, we interpret it as a one-dimensional wave equation and visualize the first
components that correspond to u.

For s = 1 the matrix A1 is constructed only with y0 and y1, and the nontrivial eigenvalue
is almost 1, such that yk+1 = A1yk is almost constant, see Figure 8.3.

Computing ρ(I + htM) = 1.0013250093925377 and

ρ(A1) = 0.9999133096993169, ρ(A2) = 0.9995785243278807,

ρ(A3) = 1.0083679570425916, ρ(A4) = 0.9996800991345408,

ρ(A5) = 1.1390517397969253, ρ(A6) = 1.7150384113562607,

the numerical diverging solutions for s = 5, 6 become plausible. Note also that for s = 6
the largest singular value is unexpectedly larger, see 8.5.

8.2. Tests for N (1), a = −10, b = −5. In this case, the exact solution is damped. For the
visualization, we interpret it as a damped one-dimensional wave equation and visualize
the first components that correspond to a damped u.

Again, for s = 1 the matrix A1 is constructed only with y0 and y1, and the nontrivial
eigenvalue is almost 1, such that yk+1 = A1yk is almost constant, see Figure 8.8.

In this case, ρ(I + htM) < 1 and ρ(As) < 1 for s = 1, . . . , 6. However, for large ht also
ρ(I + htM) > 1 become possible, such that yk+1 = (I + htM)yk diverges.

Note also that although ρ(A6) = 0.9988081280393623, the corresponding solution in
Figure 8.8 is undamped and the largest singular value is again unexpectedly larger, see
8.10.

9. Summary

It is well know that the analytical solution of y′ = My can be described with eigenvalues
and eigenvectors of M . Here, we presented some formulas to derive the eigenvalues and
singular values for specific matrices M that result from order reduction.

With the developed formulas we discerned the relationship between the eigenvalues and
singular values of some matrices related to simple PDEs and spring-damper systems and
the corresponding DMD. With this insight, we discussed these classes of examples and
tested representative examples.

10. Appendix: Linear Algebra toolbox and results

10.1. Determinants of Block Matrices.

Theorem 10.1. Consider A,B,C,D ∈ Rn×n, n ∈ N and block matrices

M :=

(
A B
C D

)
∈ R2n×2n.(10.1)

(1) If A is invertible, then

det(M) = det(A) det(D − CA−1B).
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Figure 8.1. Numerical solutions for M with N = N (1) from the Appendix
10, and a = −15, b = 0 with solve-ivp (left) and the explicit Euler method
(right).

Figure 8.2. Eingenvalues and singular values for M with N = N (1) from
the Appendix 10, and a = −15, b = 0. The eigenvalues are represented in
the complex plane, the singular values sorted by indices.
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Figure 8.3. Solutions yk+1 = Asyk, where As for s = 1, . . . , 6 was com-
puted from the first steps of the solution visualized in Figure 8.1 on the left.

Figure 8.4. Eigenvalues of As in the complex plane, where As for s =
1, . . . , 6 was computed from the first steps of the solution visualized in
Figure 8.1 on the left.
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Figure 8.5. Decreasing singular values of As, where As for s = 1, . . . , 6
was computed from the first steps of the solution visualized in Figure 8.1
on the left. Note that only s singular values are greater than zero.

(2) If D is invertible, then

det(M) = det(A−BD−1C) det(D).

(3) If A is invertivle and AC = CA, or D is imvertible and DC = CD, then

det(M) = det(AD − CB)

These formulas result from the factorizations

M =

(
0 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
,

M =

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

10.2. Formulas for Eigenvalues. There is very extensive literature on the computation
of eigenvalues of matrices with some structural properties, cf. [15], [9], [6], [16], [10] , among
others. Here, we focus on tridiagonal and block tridiagonal matrices.

10.2.1. Tridiagonal matrices. It is well established that the eigenvalues of the matrix

N (1) =


2 −1
−1 2 −1

−1
. . . . . .
. . . . . . −1
−1 2

 ∈ Rn×n
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Figure 8.6. Numerical solutions for M with N = N (1) from the Appendix
10, and a = −10, b = −5 with solve-ivp (left) and the explicit Euler method
(right).

Figure 8.7. Eingenvalues and singular values for M with N = N (1) from
the Appendix 10, and a = −10, b = −5. The eigenvalues are represented
in the complex plane, the singular values sorted by indices.
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Figure 8.8. Solutions yk+1 = Asyk, where As for s = 1, . . . , 6 was com-
puted from the first steps of the solution visualized in Figure 8.6 on the left.

Figure 8.9. Eigenvalues of As in the complex plane, where As for s =
1, . . . , 6 was computed from the first steps of the solution visualized in
Figure 8.6 on the left.
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Figure 8.10. Decreasing singular values of As, where As for s = 1, . . . , 6
was computed from the first steps of the solution visualized in Figure 8.6
on the left. Note that only s singular values are greater than zero.

are

λ
(1)
k,n = 2− 2 cos

(
kπ

n+ 1

)
, for k = 1, . . . , n

while for the modified (1, 1) entry

N (2) =


1 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1
−1 2

 ∈ Rn×n

they result to be

λ
(2)
k,n = 2− 2 cos

(
(2(k − 1) + 1)π

2n+ 1

)
, for k = 1, . . . , n.

Moreover, if we consider the modified (1, 1) and (n, n)-entries

N (3) =


1 −1

−1 2
. . .

. . . . . . −1
−1 2 −1

−1 1

 ∈ Rn×n
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we get

λ
(3)
k,n = 2− 2 cos

(
(k − 1) π

n

)
, for k = 1, . . . , n.

More general formulas for tridiagonal matrices can be found in [5], [9], [11], [12] and
the references therein. Here, we only want to note that in particular for N (1) the Matrix
of eigenvectors is given by

V (1) =

 sin
(

π
n+1

)
. . . sin

(
n π
n+1

)
...

...
sin
(
n π
n+1

)
. . . sin

(
n2 π

n+1

)


with (V (1))TV (1) = n+1
2

. This corresponds to the discrete sine transform.

10.2.2. Block tridiagonal matrices. On the other hand, for m ∈ N,

T =


4 −1 0 · · · 0

−1 4 −1
...

0
. . . . . . . . . 0

...
. . . . . . −1

0 · · · 0 −1 4

 ∈ Rm×m,

and the identity matrix Im ∈ Rm×m for n = m2, the following matrix can be defined

N (4) =


T −Im 0 · · · 0

−Im T −Im
...

0
. . . . . . . . . 0

...
. . . . . . −Im

0 · · · 0 −Im T

 ∈ Rn×n.

This matrix is a block Toeplitz symmetric tridiagonal matrix. For these matrices, there
are also explicit formulas, s. [1] and the references therein. Indeed, the eigenvalues of this
particular matrix read

λ
(4)
j,k,n = 4− 2 cos

(
jπ

m+ 1

)
− 2 cos

(
iπ

m+ 1

)
, 1 ≤ i, j ≤ m

In particular we obtain the bounds

0 < λ
(1)
k,n < 4, 0 < λ

(2)
k,n < 4, 0 ≤ λ

(3)
k,n < 4, 0 < λ

(4)
j,k,n < 8.

10.3. Some inequalities.

Theorem 10.2 (Weyl, [18]).

(1) For matrices A,B ∈ Cn×n it holds

σi+j−1(A+B) ≤ σi(A) + σj(B), 1 ≤ i, j ≤ n, i+ j ≤ n+ 1,

and, in particular,

σi(A+B) ≤ σi(A) + σ1(B), 1 ≤ i ≤ n.(10.2)
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Figure 10.1. Eigenvalues (and singular values) of the symmetric matrices
N (1), N (2), N (3) for n = 30 and N (4) for m = 10.

(2) For any A ∈ Cn×n, if λ1, . . . , λn ∈ C are the eigenvalues of A and the positive real
numbers σ1, . . . , σn are the singular values of A, listed so that |λ1| ≥ · · · ≥ |λn|
and σ1 ≥ · · · ≥ σn, then

|λ1| · · · |λn| = σ1 · · ·σn(10.3)

|λ1| · · · |λk| ≤ σ1 · · ·σk, for k = 1, . . . , n− 1.(10.4)

Theorem 10.3. (Approximation Theorem [13])
Let A = UΣV T be the singular value decomposition of A ∈ Rm×n, with nonzero singular
values σ1 ≥ σ2 ≥ . . . σr > 0,, r = rank(A). For

k < r = rank (A)

and

Ak :=
k∑
i=1

σiuiv
T
i

it holds

min
rank (B)=k

‖A−B‖2 = ‖A− Ak‖2 = σk+1.

This theorem means that there is no better rank-k approximation matrix B of A than
the first k summands of the SVD.

For the DMD, this means that for all rank-s approximations Ms with s < n it holds

σMs+1 ≤ ‖M −Ms‖2 .

Lemma 10.4. For B ∈ Rn×n and d ∈ Rn

x(k+1) := Bx(k) + d

converges to a fixpoint for any starting point x(0) iff

ρ(B) < 1,

whereas ρ(B) is the spectral radius of B

ρ(B) := max{|λ| : λ is eigenvalue of B}.
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