

Fachbereich II
Mathematik - Physik - Chemie

01/2025

Ulrike Grömping

Generalizing a Sherwood (2008) construction
for mixed level covering arrays
Verallgemeinerung einer Konstruktion von Sherwood
(2008) für gemischtstufige abdeckende Felder
(englischsprachig)

Reports in Mathematics, Physics and Chemistry
Berichte aus der Mathematik, Physik und Chemie

ISSN (print): 2190-3913

ISSN (online): tbd

Reports in Mathematics, Physics and Chemistry

Berichte aus der Mathematik, Physik und Chemie

The reports are freely available via the Internet:
https://www1.bht-berlin.de/FB_II/reports/welcome.htm

01/2025, July 2025

© 2025 Ulrike Grömping
Generalizing a Sherwood (2008) construction for mixed level covering arrays
Verallgemeinerung einer Konstruktion von Sherwood (2008) für gemischtstufige
abdeckende Felder (englischsprachig)

Editorial notice / Impressum

Published by / Herausgeber:
Fachbereich II
Berliner Hochschule für Technik
Luxemburger Str. 10
D-13353 Berlin
Internet: https://www.bht-berlin.de/ii

Responsibility for the content rests with the author(s) of the reports.
Die inhaltliche Verantwortung liegt bei den Autor/inn/en der Berichte.

ISSN (print): 2190-3913
ISSN (online): tbd

https://www1.bht-berlin.de/FB_II/reports/welcome.htm
https://www.bht-berlin.de/ii

Generalizing a Sherwood (2008) construction
for mixed level covering arrays

Ulrike Grömping

Berliner Hochschule für Technik, Germany

Abstract

Covering arrays are used for covering interactions between experimental variables in testing
complex systems, and the “strength” of the covering array determines the degree of the interactions
that are completely covered. Mixed level covering arrays permit different numbers of levels for different
experimental variables. Sherwood (2008) proposed methods for constructing strength 2 mixed level
covering arrays. This note generalizes his first construction, in support of the R package CAs.

1 Introduction
Covering arrays (CAs) of strength 𝑡 are 𝑁 × 𝑘 arrays for experimental designs in 𝑘 experimental factors,
such that for any set of columns {𝑐1, … , 𝑐𝑡} ⊆ {1, … , 𝑘}, all 𝑣𝑐1

⋅ … ⋅ 𝑣𝑐𝑡
𝑡-tuples of levels are covered at

least once by the 𝑁 rows, where 𝑣𝑐 denotes the number of levels of column 𝑐. It is a convention for CAs
to denote by a “*” positions in the CA that can take an arbitrary value from the level set of their column
without deteriorating the coverage of 𝑡-tuples; these are called flexible values. In the following, the focus
is solely on 𝑡 = 2 constructions, i.e., on covering all pairs of values.

Sherwood (2008) proposed constructions for strength 2 mixed level covering arrays (MCAs), i.e., con-
structions for obtaining covering arrays for arbitrary patterns of numbers of levels for the factors. Such
constructions are less common than constructions for uniform covering arrays (UCAs), for which all
factors have the same number of levels. Some sources use the term “CAs” to denote only UCAs; this
note uses it as the generic term for both MCA and UCA.

The first Sherwood (2008) construction consists in expanding some columns of a uniform strength 2
orthogonal array (OA) into more columns at fewer levels than before, resulting in a strength 2 MCA. His
first two theorems explicitly request an OA as the starting point and return designs whose number of rows
equals that of the OA. For a resulting run size larger than the run size of the OA, Sherwood (2008) works
with increasing the run size of the OA, which requires using so-called “Latin Ordered Designs” (LODs).
The construction in this paper instead works by starting from a suitable CA which already has more
rows than the OA; it therefore can use ordered designs (ODs) that do not have the “Latin” property.

The next section provides terminology and notation for the construction elements. In the third section,
two algorithms for the construction are stated and exemplified; these are implemented in function MCA2 of
Grömping (2025)’s R package CAs, which is currently under development. The purpose of this note is to
provide an unmistakable justification of this construction. Section 4 isolates and proves the key requisite:
for a strength 2 CA, any column in 𝑣 levels with at least 𝑟𝑣(𝑣 − 1) flexible values can be expanded
into 𝑠𝑟 columns, where 𝑠 > 1 is the maximum number of columns of an ordered design in 𝑣 levels and
𝑣(𝑣 − 1) runs. The final section discusses potential improvements of the approach.

2 Terminology and notation
CAs were already introduced in the introduction. An OA of strength 2 has each pair of level combinations
the same number of times. In the context of CAs, one is most interested in OAs for which each level
combination occurs exactly once; those are called “OAs of index unity”. A CA of strength 2 has each pair
of level combinations at least once. Thus, every OA is a CA, but the reverse is not true.

3

Table 1: OA(9, 2, 4, 3) from the Bose construction (𝐵3), with its structure highlighted by the formatting

0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2

Table 2: Dimensions of OD(𝑣) for 𝑣=2,...,10

𝑣 rows columns
2 2 2
3 6 3
4 12 4
5 20 5
6 30 3
7 42 7
8 56 8
9 72 9
10 90 3

A strength 2 MCA with 𝑘𝑗 columns at 𝑣𝑗 levels, 𝑗 = 1, … , ℓ, ℓ > 1, 𝑣1 > ⋯ > 𝑣ℓ ≥ 2 is denoted as
CA2(𝑁, 𝑣𝑘1

1 … 𝑣𝑘ℓ
ℓ). This naturally generalizes the UCA notation CA2(𝑁, 𝑣𝑘). For OAs, the analogous

notation can be used with “OA” instead of “CA”.

According to Bierbrauer (2007), an OD of strength 2 is an array whose rows have distinct elements, with
the guarantee that each ordered pair of values occurs the same number of times. A strength 2 OD of
index unity in 𝑣 levels thus must have 𝑣(𝑣 − 1) rows. According to Sherwood (2008), LODs are a special
case of ODs, for which the runs can be grouped into so-called Latin rectangles of 𝑣 rows each, for each of
which each column holds all levels.

For 𝑞 a prime or prime power, there is an OA2(𝑞2, 𝑞𝑞+1) that is constructed according to Theorem 1 of
Bose (1938). In this note, a specific variant of this OA is denoted as 𝐵𝑞, as it is the basis of the (L)OD for
𝑞 levels: the first 𝑞 rows are constant in the first 𝑞 columns with zeroes in the last column. Table 1 shows
an instance of 𝐵3. 𝐵𝑞 can be obtained with the R command SCA_Bose(q) of R package CAs (which
uses function createBose of R package lhs, Carnell (2024)). Its bottom left corner is the LOD of index
unity for 3 levels with the maximum possible number of columns: it is easy to verify that all ordered
pairs of levels (01 10 02 20 12 21) occur exactly once for each of the three column pairs, and it is of course
not possible to have more than three 3-level columns with rows having distinct levels; the array is an
LOD, because its runs consist of two groups of three rows (latin rectangles) that each hold each level in
each column. In general, the bottom left 𝑞 ⋅ (𝑞 − 1) × 𝑞 corner of 𝐵𝑞 is an LOD. The “Latin” requirement
is not needed in the proofs of this note, because the construction does not increase the number of rows of
the ingoing array. For 𝑣 that are not a prime power, an OD has at least two columns, obtained as the
cross product of the two sets of levels and deleting the rows with both levels the same. In some cases,
more columns can be created from OAs for which 𝑣 rows can be made constant, e.g., for 𝑣 = 6 there is a
three column OD, as there is an OA2(36, 63) whose first 6 rows can be made constant. For 𝑣 = 10, there
is a four-column OA, which does not permit 10 constant rows; reducing it to three columns permits an
OD by making 10 rows constant and removing them. This paper denotes an OD with as many as possible
columns in 𝑣(𝑣 − 1) runs as OD(𝑣) (and it does not distinguish between different such ODs). Table 2
shows the achievable dimensions of ODs for 𝑣 = 2, … , 10.

4

3 An algorithm for the construction of strength 2 mixed-level
CAs

The goal is to create a CA2(𝑁, 𝑣𝑘1
1 … 𝑣𝑘ℓ

ℓ), 𝑣1 > ⋯ > 𝑣ℓ, from a CA2(𝑁 ′, 𝑣𝑘′

1), 𝑁 ′ ≥ 𝑁, 𝑘′ ≤ 𝑘 = 𝑘1+⋯+𝑘ℓ.
A trivial construction with 𝑘 = 𝑘′ consists in reducing the numbers of levels of the 𝑘 − 𝑘1 columns for
which fewer than 𝑣1 levels are needed. 𝑣𝑗 levels can be achieved by making 𝑘1 − 𝑘𝑗 levels of the uniform
CA flexible in the 𝑘𝑗 relevant columns. Of course, this is somewhat wasteful, and one can attempt to
postprocess the result for reducing the number of rows, e.g., by the Nayeri et al. (2013) approach.

Sherwood (2008) proposed a different strategy for the flexible values: exploit them for expanding a single
column into several columns. Function MCA2 of the package CAs embraces this approach and proceeds as
follows:

Algorithm 3.1. Create an MCA

Input: a level pattern 𝑣𝑘1
1 … 𝑣𝑘ℓ

ℓ with 𝑣1 > ⋯ > 𝑣ℓ

Output: a mixed level array with the requested level pattern

Initialize

1. Start from a start array 𝐷, which is a suitable available CA2(𝑁 ′, 𝑣𝑘′

1) with well-chosen 𝑘′ (see
Algorithm 3.2).

2. Create an 𝑁 ′ × 𝑘 matrix 𝑀 of missing values that will hold the final MCA.
3. For 𝑐 in 1 to 𝑘1, populate column 𝑐 of 𝑀 with column 𝑐 of 𝐷 (columns without reduction in the

number of levels).

Repeat

4. Increase 𝑐 by one. Take column 𝑐 of 𝐷, and reduce its number of levels to the largest 𝑣𝑗 for which
𝑀 still needs columns, by making its most frequent 𝑣1 − 𝑣𝑗 level(s) flexible (rearrange levels so that
these are the largest ones).

5. Let 𝑘′
𝑗 denote the number of 𝑣𝑗-level columns still needed for 𝑀 (𝑘′

𝑗 = 𝑘𝑗 at the first round for 𝑣𝑗
levels). If 𝑘′

𝑗 > 1, determine the number 𝑓𝑐 of flexible values in column 𝑐, and identify the largest
integer 𝑟 such that 𝑓𝑐 ≥ 𝑟𝑣𝑗(1 − 𝑣𝑗).

a. If 𝑟 = 0, each 𝑣𝑗-level column needs a new column of 𝐷. Populate 𝑀 the first free column of
𝑀 with column 𝑐 of 𝐷, and move to step 4.

b. If 𝑟 ≥ 1, create up to 𝑠𝑟
2 𝑣2-level columns from column 𝑐 in the following way:

• Create an 𝑣𝑗(𝑣𝑗 − 1) × 𝑠𝑗 OD(𝑣𝑗).
• Horizontally concatenate 𝑠𝑗 identical copies of column 𝑐 into the 𝑁 ′ × 𝑠𝑗 matrix 𝐸, which

initially has constant rows.
• Select 𝑣𝑗(1 − 𝑣𝑗) rows with flexible values, and populate them with OD(𝑣𝑗). Now 𝐸 is a

CA2(𝑁 ′, 𝑣𝑠𝑗
𝑗) (see proof in the next section).

• If 𝑟 > 1, each column of 𝐸 still has at least 𝑣𝑗(𝑣𝑗 − 1) flexible values, and the process can
be repeated with each column.

• … which eventually yields 𝑠𝑟
𝑗 𝑣𝑗-level columns in 𝐸

c. If 𝑘′
𝑗 > 𝑠𝑟

𝑗 , place all columns of 𝐸 in 𝑀, reduce 𝑘′
𝑗 by 𝑠𝑟

𝑗 , and go to step 4.
d. If 𝑘′

𝑗 ≤ 𝑠𝑟
𝑗 , take 𝑘′

𝑗 columns from 𝐸 and populate the missing 𝑣𝑗-level columns in 𝑀 with these
columns. If 𝑗 < ℓ, go to step 4. If 𝑗 = ℓ, return 𝑀.

Algorithm 3.1 returns a CA2(𝑁 ′, 𝑣𝑘1
1 … 𝑣𝑘ℓ

ℓ). It will often be possible to reduce 𝑁 ′ by the Nayeri et al.
(2013) method.

Algorithm 3.2. Determine ingredients for Algorithm 3.1

Input: a level pattern 𝑣𝑘1
1 … 𝑣𝑘ℓ

ℓ with 𝑣1 > ⋯ > 𝑣ℓ

Output: 𝑘′, 𝑁 ′ and 𝐷 for Algorithm 3.1

1. Let 𝑘′ = 𝑘1 + ℓ − 1.
2. Determine the smallest feasible 𝑁 ′ for a CA(𝑁 ′, 𝑣𝑘′

1).
3. Given 𝑁 ′, determine the minimum achievable 𝑓𝑗 (number of flexible values in a column with 𝑣𝑗

levels) for 𝑗 = 2, … , ℓ, as 𝑓𝑗 = ⌈𝑁 ′(𝑣1 − 𝑣𝑗)/𝑣1⌉.

5

Table 3: A CA2(22, 4338260) created with Algorithm 3.1.
𝐷 was used for constructing 𝑀, as described in Example 3.1.
* denotes a flexible value.
𝑀 was created with the command
M <- MCA2(c(rep(4,3), rep(3,8), rep(2,30)), outerRetry = 0)
using version 0.10 of the R package CAs

𝐷 𝑀
1 0000000 000
2 0111212 01111122211000000000000000011111111111111
3 2011121 20111111122111111111111111111111111111111
4 1201112 12011111111111111111111111100000000000000
5 2120111 21200011111111111111111111111111111111111
6 1212011 12122200011111111111111111111111111111111
7 1121201 11211122200111111111111111111111111111111
8 1112120 11122211122000000000000000000000000000000
9 0222323 02222201222111111110000000011111111000000
10 3022232 30222222201000000001111111100000000111111
11 2302223 23022222222000011110000111100001111000011
12 3230222 32300022222111100001111000011110000111100
13 2323022 23201200022110011001100110011001100110011
14 2232302 22322212000001100110011001100110011001100
15 2223230 22212022212000000000000000000000000000000
16 0333131 03320111120111111111111111111111111111111
17 1033313 10302120111010101010101010101010101010101
18 3103331 31010202102111111111111111111111111111111
19 1310333 13100010210101010101010101010101010101010
20 3131033 31311100021******************************
21 3313103 33121011100******************************
22 3331310 33311121011000000000000000000000000000000

4. Calculate the minimium numbers of feasible 𝑣𝑗-level columns (𝑠𝑟𝑗
𝑗) with 𝑟𝑗 the maximum 𝑟 such that

𝑓𝑗 ≥ 𝑟𝑣𝑗(𝑣𝑗 − 1), and 𝑠𝑗 the number of columns of OD(𝑣𝑗), as before.
5. Let 𝑘′

𝑗 = ⌈𝑘𝑗/(𝑠𝑟𝑗
𝑗)⌉ the number of columns of 𝐷 needed for obtaining 𝑘𝑗 𝑣𝑗-level columns for 𝑀.

This yields 𝑘′ = 𝑘′
1 + ⋯ + 𝑘′

ℓ as the new 𝑘′.
6. Repeat steps 2 to 5 once.
7. Determine whether 𝑁 ′ can be reduced. If so, check whether the reduced 𝑁 ′ still permits the

construction (are there still enough flexible values for each number of levels?). If yes, keep the
reduced 𝑁 ′, otherwise keep the larger 𝑁 ′.

8. Return 𝑘′ and 𝐷 (as the CA2(𝑁 ′, 𝑣𝑘′) with the 𝑁 ′ of Step 7).

Step 1 in the algorithm for 𝑘′ corresponds to the expectation that each 𝑣1-level factor needs a column of
𝐷, and the other variants can be constructed from a single dedicated column for each 𝑣𝑗. If that was
overoptimistic, step 4 figures out how many columns would be needed for the small 𝑁 ′ for the initial
guess of 𝑘′. Subsequently, 𝑁 ′ is updated to the run size of a CA for this number of columns, and the
numbers of flexible values 𝑓𝑗 are updated to reflect this new 𝑁 ′. Based on these flexible values, it is
checked whether 𝑘′ may be reduced again. Step 7 checks whether this in turn leads to a new and smaller
𝑁 ′, and whether or not this smaller 𝑁 ′ still permits the construction (might go wrong because of a
reduced number of flexible values), and returns either the reduced 𝑁 ′ or the larger 𝑁 ′, depending on the
outcome. Step 8 returns 𝑘′ and the suitable 𝑁 ′-run CA 𝐷.

Example 3.1. This example describes the construction of a CA2(22, 4338230) using the algorithms stated
above. The resulting array can be found in Table 3.

Algorithm 3.2 determines 𝑘′ = 7:

1. The initial guess is 𝑘′ = 3 + 3 − 1 = 5.
2. It can be accommodated in a 16 × 5 matrix 𝐷, i.e., 𝑁 ′ = 16, e.g., 𝐵5.

6

3. This permits 16 ⋅ (4 − 3)/4 = 4 flexible values for 3-level columns and 16 ⋅ (4 − 2)/4 = 8 flexible
values for 2-level columns.

4. 𝑟2 = 0, as OD(3) has 3 ⋅ 2 = 6 rows. Thus, a single column of 𝐷 can generate only 𝑠0
2 = 1 3-level

column. 𝑟3 = 4 and 𝑠3 = 2, which implies that a single column of 𝐷 can generate 24 = 16 2-level
columns.

5. With 𝑁 ′ = 16 runs for 𝐷,

𝑘′ = ⌈ 3
40 ⌉

⏟
𝑣1=4

+ ⌈ 8
30 ⌉

⏟
𝑣2=3

+ ⌈30
24 ⌉

⏟
𝑣3=2

= 3 + 8 + 2 = 13.

6. Repeat 2.: 13 4-level columns can be accommodated in 𝑁 ′ = 25 runs (using the construction of
Colbourn et al. (2010)).
Repeat 3.: There are at least 7 flexible values for 3-level columns and at least 13 flexible values for
2-level columns.
Repeat 4.: This implies 𝑟2 = 1, i.e., and each column of 𝐷 can generate 𝑠𝑟2

2 = 31 = 3 3-level columns
for 𝑀. Furthermore, 𝑟3 = 6, so that a single column of 𝐷 can generate up to 𝑠𝑟3

3 = 26 = 64 2-level
columns for 𝑀. Repeat 5.: Hence, with 𝑁 ′ = 25,

𝑘′ = ⌈ 3
40 ⌉

⏟
𝑣1=4

+ ⌈ 8
31 ⌉

⏟
𝑣2=3

+ ⌈30
26 ⌉

⏟
𝑣3=2

= 3 + 3 + 1 = 7.

7. This number of columns can be accommodated in 𝑁 ′ = 22 runs (the best known array according
to Colbourn (n.d.) has 21 runs with construction “simulated annealing (Cohen)”; this array is at
present not available in R package CAs). With the 𝑁 ′ = 22 runs, it is still possible to produce the
target CA with a 22 × 7 𝐷 (6 flexible values are possible for 3-level columns by making the most
frequent level missing, and 26 = 64 flexible values are possible for 2-level columns, by making the
two most frequent levels missing).

8. 𝑘′ = 7, and 𝐷 is obtained from the Meagher and Stevens (2005) construction (see Table 3).

Algorithm 3.1 creates the MCA 𝑀 of Table 3 by successively processing the columns of 𝐷: The first
𝑘1 = 3 columns of 𝐷 become the first 𝑘1 columns of 𝑀 (the 4-level columns), the next 𝑘2 = 8 columns of
𝑀 are based on columns 4 to 6 of 𝐷 (the 3-level columns), and the 30 2-level columns of 𝑀 are created
from column 7 of 𝐷.

• Consider columns 4 to 6 of 𝑀, which are based on column 4 of 𝐷: Where column 4 of 𝐷 is not 3,
columns 4 to 6 of 𝑀 all have the level of column 4 of 𝐷. For the 6&nbps;rows for which column 4
of 𝐷 has the level 3, columns &nbps;4 to 6 of 𝑀 were initially made flexible, and these the 6 × 3
flexible submatrix of columns 4 to 6 of 𝑀 was then replaced with the 6 × 3 OD(3), whose rows are
012, 120, 201, 021, 210, 102. Columns 7 to 9 of 𝑀 are treated analogously, based on column 5 of
𝐷, and columns 10 and 11 of 𝑀 are obtained as the first two of three columns resulting from the
analogous processing of column 6 of 𝐷.

• For the 2-level columns, recursive processing is needed for obtaining 30 columns of 𝑀 from a single
column of 𝐷, based on the 2 × 2 OD(2), whose rows are 01, 10.

– Initially, levels 2 and 3 of column 7 of 𝐷 are made flexible. The column is then duplicated,
and the first 2 × 2 flexible submatrix, consisting of rows 2 and 4, is replaced with OD(2).

– The two resulting columns are then treated again, starting with the second one: each is
duplicated, and the now-first 2 × 2 flexible submatrix in rows 9 and 10 is replaced with OD(2)
in reverse column order. After this step, there are four 2-level columns, all of which are
now again duplicated, populating the now-first 2 × 2 flexible submatrices in rows 11 and 12
with OD(2). The eight resulting columns are now treated, populating the now-first flexible
submatrices in rows 13 and 14 with OD(2) in reverse column order. The resulting 16 columns
have to be treated once more, populating the now-first 2 × 2 flexible submatrices in rows 17
and 19 with OD(2). Of the thus-created 32 columns, the last two are omitted because they
are not needed.
Note that the alternation of OD(2) with reverse OD(2) is caused by the processing order of
the array columns from right to left and by moving the new columns to the very right of the
matrix 𝐸 in recursive expansion.
Also note that the rows for which the last column of 𝐷 has non-flexible values (0,1) are constant
throughout all the columns generated from it.

7

Table 4: The strength 2 covering array of Table 3 after optimization with the Nayeri et al. (2013)
algorithm.
* denotes a flexible value.
The optimization can be reproduced with the command
Moptimized <- postopNCK(M, 2, seed=22822, outerRetry=2),
as implemented in version 0.10 of R package CAs.

𝑀 after optimization

1 20102111212100011011111111001111101000100
2 21210201021001111011001111001001100010011
3 12110020122110100000000011100110001000110
4 02212102010111111010010000000111010110100
5 32220221211110100110010010010010010110110
6 11122000201011111101001111110000001101001
7 13220021110010010000110101010101111101101
8 12011211111001101011101010000100110110101
9 30311100220111000011000110110010110001100
10 310002021021010000101100001101111110001*0
11 33112011001010101110111*01111000010011011
12 22302022100101000**1110110011111*11**1011
13 230221022200000**1*10011111*111000*0100*1
14 01121222210000000**010110011***01**00***0
15 103022101100001*11*0100001**1001000111011
16 00001020001*1*0101010***01**1001000*11011
17 102201220020****1*0******010*0***00111011
18 23201210022111**010011*000000*001*110***0
19 313*01120*1*0**1**0*0*1****0**0**01*100*0
20 03320111122*************1*********1******

Example 3.2. Postprocessing the 22×41 matrix 𝑀 of the previous example with the Nayeri et al. (2013)
algorithm, using the default settings of function postopNCK of R package CAs (version 0.10) quickly
reached run size 21, and after further optimization rounds, run size 20; this result was obtained with the
randomly assigned seed 22822, with which it can be reproduced. The optimized 20 run CA is shown in
Table 4.

The next section will provide the proof that Algorithm 3.1 actually delivers strength 2. The proof is
basically unchanged from Sherwood (2008), as Sherwood’s proof of the strength 2 property did not make
use of the OA property that he requested for the ingoing array. The OA property was solely needed for
being able to state optimality of the result in case of at least 2 columns at the largest number of levels.
This paper does not state optimality of the result, but contends with the strength 2 property. In fact, as
was seen in the examples, in cases for which the run size does not coincide with a known lower bound, it
is worthwhile to attempt improvement of the run size by a post-processing method like that of Nayeri et
al. (2013).

4 Proof for the central construction step
The following theorem states the construction for the to-be-expanded column in the last position (w.l.o.g.).
It avoids notation for mixed levels. The CA in the theorem can have mixed or fixed levels, and there is
no requirement on numbers of levels being in any specific order.

Theorem 4.1. Let 𝐶 be an 𝑁 × 𝑘 strength 2 CA whose 𝑘th column in 𝑣 levels has 𝑓 flexible values, with
𝑓 ≥ 𝑟𝑣(𝑣 − 1). Then, the 𝑁 × (𝑘 − 1 + 𝑠𝑟) matrix obtained as the first 𝑘 − 1 columns of 𝐶, combined with
the 𝑁 × 𝑠𝑟 matrix 𝐸 constructed like in step 5.b of Algorithm 3.1 is a strength 2 CA.

Proof. Let 𝐶−𝑘 denote the first 𝑘 − 1 columns of 𝐶.

• Obviously, 𝐶−𝑘 is a strength 2 CA.

8

• All columns of the matrix 𝐸 coincide with the 𝑘th column of 𝐶 in all non-flexible positions of that
column. Therefore, all pairs of levels are covered for column pairs with one column from 𝐶−𝑘 and
the other from 𝐸.

It remains to be shown that pairs of columns from 𝐸 have all their level pairs covered. This can be seen
as follows:

• Pairs with identical levels are covered by the constant rows that hold the previously non-flexible
levels.

• For 𝑟 = 1, 𝑣(𝑣 − 1) previously flexible rows of 𝐸 hold an OD(𝑣) that covers all pairs with distinct
levels. This completes the proof for 𝑟 = 1.

• For 𝑟 > 1, the above reasoning can be applied repeatedly to all interim steps, which completes the
proof also for this case.

5 Discussion
Sherwood (2008) proposed a highly flexible construction for mixed level CAs. His first two theorems were
generalized to using arbitrary strength 2 CAs as ingoing matrices. This note details the implementation
for this generalized version and proves that it yields a strength 2 CA, as intended; the implementation of
the function MCA2 in the R package CAs is thus mathematically sound.

The implementation does not attempt the use of a single column of the matrix 𝐷 for different numbers of
levels in the outcome matrix 𝑀: with 𝑟𝑗 > 1, it would be possible to use a column of 𝐷 for, e.g., 𝑠𝑟𝑗−1

𝑗
columns in 𝑣𝑗 levels and subsequently use remaining flexible values for creating columns in 𝑣𝑗+1 < 𝑣𝑗 levels.
This should be doable (if tedious) and might sometimes help to achieve a smaller 𝑘′ in Algorithm 3.2,
which leads to fewer rows in 𝐷. Without post-optimization of run size, it is important to use the
smallest possible 𝐷 for row expansion. With post-optimization, this is not quite as important, as run size
post-optimization likely offsets at least part of the size difference.

References
Bierbrauer, J. (2007), “Ordered Designs, Perpendicular Arrays, and Permutation Sets,” Handbook of

combinatorial designs, Discrete mathematics and its applications, Boca Raton, FL: Chapman &
Hall/Taylor & Francis.

Bose, R. C. (1938), “On the application of the properties of Galois fields to the problem of construction
of hyper-Graeco-Latin squares,” Sankhyã, 3, 323–338.

Carnell, R. (2024), “lhs: Latin Hypercube Samples.” https://doi.org/10.32614/CRAN.package.lhs.
Colbourn, C. J. (n.d.). “Covering array tables: 2<=v<=25, 2 <=t<=6, t<=k<=10000, 2005–23,”

Formerly available at https://www.public.asu .edu /~ccolbou/src /tabby; November 2024 status of
tables available at https://github.com/ugroempi/CAs/blob/main/ColbournTables.md.

Colbourn, C., Kéri, G., Rivas Soriano, P. P., and Schlage-Puchta, J.-C. (2010), “Covering and radius-
covering arrays: constructions and classification,” Discrete Appl. Math, 158, 1158–1180. https:
//doi.org/10.1016/j.dam.2010.03.008.

Grömping, U. (2025), CAs: Creating Covering Arrays, R package development version 0.10. Current
version available at https://github.com/ugroempi/CAs.

Meagher, K., and Stevens, B. (2005), “Group construction of covering arrays,” Journal of Combinatorial
Designs, 13, 70–77. https://doi.org/10.1002/jcd.20035.

Nayeri, P., Colbourn, C. J., and Konjevod, G. (2013), “Randomized post-optimization of covering arrays,”
European Journal of Combinatorics, 34, 91–103. https://doi.org/10.1016/j.ejc.2012.07.017.

Sherwood, G. B. (2008), “Optimal and near-optimal mixed covering arrays by column expansion,” Discrete
Mathematics, Elsevier BV, 308, 6022–6035. https://doi.org/10.1016/j.disc.2007.11.021.

9

https://doi.org/10.32614/CRAN.package.lhs
https://github.com/ugroempi/CAs/blob/main/ColbournTables.md
https://doi.org/10.1016/j.dam.2010.03.008
https://doi.org/10.1016/j.dam.2010.03.008
https://github.com/ugroempi/CAs
https://doi.org/10.1002/jcd.20035
https://doi.org/10.1016/j.ejc.2012.07.017
https://doi.org/10.1016/j.disc.2007.11.021

	Introduction
	Terminology and notation
	An algorithm for the construction of strength 2 mixed-level CAs
	Proof for the central construction step
	Discussion
	References
	DeckblattReport32.pdf
	01/2025

